Nuprl Lemma : matrix-scalar-mul-mul

[n,m:ℕ]. ∀[r:Rng]. ∀[k1,k2:|r|]. ∀[M:Matrix(n;m;r)].  (k1*k2*M k1 k2*M ∈ Matrix(n;m;r))


Proof




Definitions occuring in Statement :  matrix-scalar-mul: k*M matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] infix_ap: y equal: t ∈ T rng: Rng rng_times: * rng_car: |r|
Definitions unfolded in proof :  true: True rng: Rng nat: prop: squash: T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top all: x:A. B[x] matrix-scalar-mul: k*M member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  matrix-ap_wf rng_times_wf infix_ap_wf nat_wf rng_wf matrix_wf rng_sig_wf rng_car_wf int_seg_wf true_wf squash_wf mx_wf matrix_ap_mx_lemma equal_wf rng_times_assoc iff_weakening_equal
Rules used in proof :  axiomEquality baseClosed imageMemberEquality rename setElimination intEquality because_Cache natural_numberEquality functionEquality equalitySymmetry equalityTransitivity hypothesisEquality isectElimination imageElimination lambdaEquality applyEquality hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution universeEquality independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[k1,k2:|r|].  \mforall{}[M:Matrix(n;m;r)].    (k1*k2*M  =  k1  *  k2*M)



Date html generated: 2018_05_21-PM-09_38_25
Last ObjectModification: 2017_12_14-PM-01_34_57

Theory : matrices


Home Index