Nuprl Lemma : adjugate-property2
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  ((adj(M)*M) = |M|*I ∈ Matrix(n;n;r))
Proof
Definitions occuring in Statement : 
adjugate: adj(M)
, 
matrix-scalar-mul: k*M
, 
matrix-det: |M|
, 
identity-matrix: I
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
top: Top
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
rng: Rng
, 
crng: CRng
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
crng_wf, 
nat_wf, 
matrix_wf, 
iff_weakening_equal, 
identity-matrix_wf, 
matrix-det_wf, 
matrix-scalar-mul_wf, 
adjugate_wf, 
matrix-times_wf, 
true_wf, 
squash_wf, 
equal_wf, 
matrix-transpose-twice, 
matrix-transpose_wf, 
matrix-transpose-times, 
rng_wf, 
adjugate-transpose, 
transpose-scalar-mul, 
adjugate-property, 
rng_car_wf, 
rng_sig_wf, 
det-transpose, 
transpose-identity-matrix
Rules used in proof : 
voidEquality, 
voidElimination, 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
natural_numberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
applyLambdaEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
intEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    ((adj(M)*M)  =  |M|*I)
Date html generated:
2018_05_21-PM-09_39_15
Last ObjectModification:
2017_12_14-PM-00_51_55
Theory : matrices
Home
Index