Nuprl Lemma : adjugate-property2

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  ((adj(M)*M) |M|*I ∈ Matrix(n;n;r))


Proof




Definitions occuring in Statement :  adjugate: adj(M) matrix-scalar-mul: k*M matrix-det: |M| identity-matrix: I matrix-times: (M*N) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T crng: CRng
Definitions unfolded in proof :  top: Top implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T rng: Rng crng: CRng nat: member: t ∈ T uall: [x:A]. B[x] rev_implies:  Q
Lemmas referenced :  crng_wf nat_wf matrix_wf iff_weakening_equal identity-matrix_wf matrix-det_wf matrix-scalar-mul_wf adjugate_wf matrix-times_wf true_wf squash_wf equal_wf matrix-transpose-twice matrix-transpose_wf matrix-transpose-times rng_wf adjugate-transpose transpose-scalar-mul adjugate-property rng_car_wf rng_sig_wf det-transpose transpose-identity-matrix
Rules used in proof :  voidEquality voidElimination axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality sqequalRule natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality hypothesisEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid applyLambdaEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution intEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    ((adj(M)*M)  =  |M|*I)



Date html generated: 2018_05_21-PM-09_39_15
Last ObjectModification: 2017_12_14-PM-00_51_55

Theory : matrices


Home Index