Nuprl Lemma : transpose-identity-matrix

[r:RngSig]. ∀[n:ℕ].  (I' I ∈ Matrix(n;n;r))


Proof




Definitions occuring in Statement :  identity-matrix: I matrix-transpose: M' matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  true: True subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k ge: i ≥  nequal: a ≠ b ∈  not: ¬A false: False assert: b ifthenelse: if then else fi  bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q int_seg: {i..j-} nat: prop: squash: T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top all: x:A. B[x] matrix-transpose: M' identity-matrix: I member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf rng_zero_wf int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties int_seg_properties neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert rng_one_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf rng_sig_wf rng_car_wf int_seg_wf true_wf squash_wf mx_wf matrix_ap_mx_lemma
Rules used in proof :  axiomEquality baseClosed imageMemberEquality independent_pairFormation int_eqEquality approximateComputation int_eqReduceFalseSq independent_functionElimination cumulativity instantiate promote_hyp dependent_pairFormation int_eqReduceTrueSq independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation rename setElimination intEquality because_Cache natural_numberEquality functionEquality equalitySymmetry equalityTransitivity hypothesisEquality isectElimination imageElimination lambdaEquality applyEquality hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:RngSig].  \mforall{}[n:\mBbbN{}].    (I'  =  I)



Date html generated: 2018_05_21-PM-09_38_38
Last ObjectModification: 2017_12_14-PM-00_12_35

Theory : matrices


Home Index