Nuprl Lemma : adjugate_wf

[r:Rng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  (adj(M) ∈ Matrix(n;n;r))


Proof




Definitions occuring in Statement :  adjugate: adj(M) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] member: t ∈ T rng: Rng
Definitions unfolded in proof :  so_apply: x[s1;s2] assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k guard: {T} uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] int_seg: {i..j-} so_lambda: λ2y.t[x; y] rng: Rng nat: adjugate: adj(M) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf nat_wf matrix_wf int_seg_wf rng_minus_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert matrix-minor_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties subtract_wf matrix-det_wf eqtt_to_assert bool_wf isEven_wf mx_wf
Rules used in proof :  axiomEquality applyEquality cumulativity instantiate promote_hyp equalitySymmetry equalityTransitivity independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation dependent_functionElimination natural_numberEquality dependent_set_memberEquality hypothesisEquality independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation addEquality lambdaEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    (adj(M)  \mmember{}  Matrix(n;n;r))



Date html generated: 2018_05_21-PM-09_38_43
Last ObjectModification: 2017_12_14-AM-00_01_51

Theory : matrices


Home Index