Nuprl Lemma : matrix-transpose-times
∀[n,k,m:ℕ]. ∀[r:CRng]. ∀[M:Matrix(n;k;r)]. ∀[N:Matrix(k;m;r)].  ((M*N)' = (N'*M') ∈ Matrix(m;n;r))
Proof
Definitions occuring in Statement : 
matrix-times: (M*N)
, 
matrix-transpose: M'
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
mx: matrix(M[x; y])
, 
matrix-ap: M[i,j]
, 
so_lambda: λ2x y.t[x; y]
, 
rng: Rng
, 
crng: CRng
, 
nat: ℕ
, 
prop: ℙ
, 
squash: ↓T
, 
matrix-times: (M*N)
, 
matrix-transpose: M'
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
crng_wf, 
matrix_wf, 
iff_weakening_equal, 
rng_times_wf, 
infix_ap_wf, 
matrix-ap_wf, 
crng_times_comm, 
equal_wf, 
rng_wf, 
rng_sum_wf, 
rng_sig_wf, 
rng_car_wf, 
int_seg_wf, 
true_wf, 
squash_wf, 
mx_wf
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
sqequalRule, 
rename, 
setElimination, 
intEquality, 
because_Cache, 
natural_numberEquality, 
functionEquality, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n,k,m:\mBbbN{}].  \mforall{}[r:CRng].  \mforall{}[M:Matrix(n;k;r)].  \mforall{}[N:Matrix(k;m;r)].    ((M*N)'  =  (N'*M'))
Date html generated:
2018_05_21-PM-09_34_47
Last ObjectModification:
2017_12_13-PM-03_00_14
Theory : matrices
Home
Index