Nuprl Lemma : matrix-transpose-times

[n,k,m:ℕ]. ∀[r:CRng]. ∀[M:Matrix(n;k;r)]. ∀[N:Matrix(k;m;r)].  ((M*N)' (N'*M') ∈ Matrix(m;n;r))


Proof




Definitions occuring in Statement :  matrix-times: (M*N) matrix-transpose: M' matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T crng: CRng
Definitions unfolded in proof :  so_apply: x[s1;s2] so_apply: x[s] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] mx: matrix(M[x; y]) matrix-ap: M[i,j] so_lambda: λ2y.t[x; y] rng: Rng crng: CRng nat: prop: squash: T matrix-times: (M*N) matrix-transpose: M' member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf crng_wf matrix_wf iff_weakening_equal rng_times_wf infix_ap_wf matrix-ap_wf crng_times_comm equal_wf rng_wf rng_sum_wf rng_sig_wf rng_car_wf int_seg_wf true_wf squash_wf mx_wf
Rules used in proof :  axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality universeEquality sqequalRule rename setElimination intEquality because_Cache natural_numberEquality functionEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n,k,m:\mBbbN{}].  \mforall{}[r:CRng].  \mforall{}[M:Matrix(n;k;r)].  \mforall{}[N:Matrix(k;m;r)].    ((M*N)'  =  (N'*M'))



Date html generated: 2018_05_21-PM-09_34_47
Last ObjectModification: 2017_12_13-PM-03_00_14

Theory : matrices


Home Index