Nuprl Lemma : adjugate-transpose

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)].  (adj(M') adj(M)' ∈ Matrix(n;n;r))


Proof




Definitions occuring in Statement :  adjugate: adj(M) matrix-transpose: M' matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T crng: CRng
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k ge: i ≥  guard: {T} ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q int_seg: {i..j-} true: True so_apply: x[s1;s2] top: Top all: x:A. B[x] so_lambda: λ2y.t[x; y] rng: Rng crng: CRng nat: prop: squash: T adjugate: adj(M) matrix-transpose: M' member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  ite_rw_false ite_rw_true iff_weakening_equal btrue_neq_bfalse not_assert_elim and_wf assert_elim add-commutes rng_minus_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert matrix-det_wf matrix-minor_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties subtract_wf det-transpose equal_wf eqtt_to_assert bool_wf isEven_wf crng_wf nat_wf matrix_wf matrix_ap_mx_lemma rng_sig_wf rng_car_wf int_seg_wf true_wf squash_wf mx_wf transpose-matrix-minor
Rules used in proof :  applyLambdaEquality cumulativity instantiate promote_hyp independent_pairFormation int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation dependent_set_memberEquality independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation addEquality axiomEquality baseClosed imageMemberEquality voidEquality voidElimination isect_memberEquality dependent_functionElimination rename setElimination intEquality because_Cache natural_numberEquality functionEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].    (adj(M')  =  adj(M)')



Date html generated: 2018_05_21-PM-09_39_05
Last ObjectModification: 2017_12_14-PM-00_28_46

Theory : matrices


Home Index