Nuprl Lemma : det-times

[r:CRng]. ∀[n:ℕ]. ∀[A,B:Matrix(n;n;r)].  (|(A*B)| (|A| |B|) ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-det: |M| matrix-times: (M*N) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] infix_ap: y equal: t ∈ T crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  rng: Rng crng: CRng nat: member: t ∈ T uall: [x:A]. B[x] so_apply: x[s1;s2] not: ¬A false: False so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} prop: implies:  Q all: x:A. B[x] cand: c∧ B and: P ∧ Q det-fun: det-fun(r;n) nequal: a ≠ b ∈  assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) bfalse: ff rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k guard: {T} uimplies: supposing a uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 top: Top matrix-times: (M*N) matrix-mul-row: matrix-mul-row(r;k;i;M) squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B mx: matrix(M[x; y]) matrix-ap: M[i,j] matrix-swap-rows: matrix-swap-rows(M;i;j)
Lemmas referenced :  crng_wf nat_wf matrix_wf rng_zero_wf rng_minus_wf matrix-ap_wf rng_plus_wf mx_wf rng_times_wf infix_ap_wf matrix-mul-row_wf all_wf matrix-swap-rows_wf equal_wf not_wf int_seg_wf rng_car_wf matrix-times_wf matrix-det_wf det-mul-row neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert rng_times_assoc iff_weakening_equal rng_sum_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rng_times_sum_l assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf rng_sig_wf matrix_ap_mx_lemma rng_wf true_wf squash_wf lelt_wf false_wf det-add-row rng_sum_plus rng_times_over_plus det-swap-rows det-equal-rows det-fun-is-determinant crng_times_comm matrix-det-is-determinant determinant_wf matrix-times-id-left
Rules used in proof :  axiomEquality isect_memberEquality sqequalRule because_Cache hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution int_eqEquality functionExtensionality applyEquality productEquality intEquality functionEquality independent_pairFormation natural_numberEquality lambdaFormation lambdaEquality dependent_set_memberEquality equalitySymmetry equalityTransitivity int_eqReduceFalseSq cumulativity instantiate promote_hyp baseClosed imageMemberEquality dependent_pairFormation independent_functionElimination approximateComputation universeEquality int_eqReduceTrueSq independent_isectElimination productElimination equalityElimination unionElimination voidEquality voidElimination dependent_functionElimination imageElimination hyp_replacement levelHypothesis equalityUniverse applyLambdaEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[A,B:Matrix(n;n;r)].    (|(A*B)|  =  (|A|  *  |B|))



Date html generated: 2018_05_21-PM-09_38_18
Last ObjectModification: 2017_12_13-PM-05_32_22

Theory : matrices


Home Index