Nuprl Lemma : det-times
∀[r:CRng]. ∀[n:ℕ]. ∀[A,B:Matrix(n;n;r)].  (|(A*B)| = (|A| * |B|) ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix-det: |M|
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_times: *
, 
rng_car: |r|
Definitions unfolded in proof : 
rng: Rng
, 
crng: CRng
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
not: ¬A
, 
false: False
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
det-fun: det-fun(r;n)
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
top: Top
, 
matrix-times: (M*N)
, 
matrix-mul-row: matrix-mul-row(r;k;i;M)
, 
squash: ↓T
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
mx: matrix(M[x; y])
, 
matrix-ap: M[i,j]
, 
matrix-swap-rows: matrix-swap-rows(M;i;j)
Lemmas referenced : 
crng_wf, 
nat_wf, 
matrix_wf, 
rng_zero_wf, 
rng_minus_wf, 
matrix-ap_wf, 
rng_plus_wf, 
mx_wf, 
rng_times_wf, 
infix_ap_wf, 
matrix-mul-row_wf, 
all_wf, 
matrix-swap-rows_wf, 
equal_wf, 
not_wf, 
int_seg_wf, 
rng_car_wf, 
matrix-times_wf, 
matrix-det_wf, 
det-mul-row, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
rng_times_assoc, 
iff_weakening_equal, 
rng_sum_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
rng_times_sum_l, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
rng_sig_wf, 
matrix_ap_mx_lemma, 
rng_wf, 
true_wf, 
squash_wf, 
lelt_wf, 
false_wf, 
det-add-row, 
rng_sum_plus, 
rng_times_over_plus, 
det-swap-rows, 
det-equal-rows, 
det-fun-is-determinant, 
crng_times_comm, 
matrix-det-is-determinant, 
determinant_wf, 
matrix-times-id-left
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
because_Cache, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
int_eqEquality, 
functionExtensionality, 
applyEquality, 
productEquality, 
intEquality, 
functionEquality, 
independent_pairFormation, 
natural_numberEquality, 
lambdaFormation, 
lambdaEquality, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
int_eqReduceFalseSq, 
cumulativity, 
instantiate, 
promote_hyp, 
baseClosed, 
imageMemberEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
universeEquality, 
int_eqReduceTrueSq, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
voidEquality, 
voidElimination, 
dependent_functionElimination, 
imageElimination, 
hyp_replacement, 
levelHypothesis, 
equalityUniverse, 
applyLambdaEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[A,B:Matrix(n;n;r)].    (|(A*B)|  =  (|A|  *  |B|))
Date html generated:
2018_05_21-PM-09_38_18
Last ObjectModification:
2017_12_13-PM-05_32_22
Theory : matrices
Home
Index