Nuprl Lemma : det-mul-row

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[i:ℕn]. ∀[k:|r|].  (|matrix-mul-row(r;k;i;M)| (k |M|) ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-det: |M| matrix-mul-row: matrix-mul-row(r;k;i;M) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uall: [x:A]. B[x] infix_ap: y natural_number: $n equal: t ∈ T crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff lt_int: i <j ifthenelse: if then else fi  ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] mon_itop: Π lb ≤ i < ub. E[i] rng_prod: rng_prod let: let uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True uimplies: supposing a all: x:A. B[x] and: P ∧ Q so_apply: x[s] not: ¬A implies:  Q false: False subtype_rel: A ⊆B injection: A →⟶ B rng: Rng so_lambda: λ2x.t[x] nat: crng: CRng prop: squash: T matrix-det: |M| member: t ∈ T uall: [x:A]. B[x] pi1: fst(t) grp_car: |g| mul_mon_of_rng: r↓xmn top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) lelt: i ≤ j < k ge: i ≥  int_seg: {i..j-} infix_ap: y mx: matrix(M[x; y]) matrix-mul-row: matrix-mul-row(r;k;i;M) matrix-ap: M[i,j] pi2: snd(t) grp_op: *
Lemmas referenced :  crng_wf nat_wf matrix_wf rng_times_over_minus rng_times_wf infix_ap_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf rng_wf iff_weakening_equal subtype_rel_list subtype_rel_set rng_times_lsum_l l_member_wf all_wf no_repeats_wf list_wf permutations-list_wf matrix-mul-row_wf matrix-ap_wf rng_prod_wf rng_minus_wf int_subtype_base equal-wf-base permutation-sign_wf rng_car_wf let_wf int_seg_wf injection_wf rng_lsum_wf true_wf squash_wf equal_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties mul_mon_of_rng_wf_c mon_itop_split_el mul_mon_of_rng_wf grp_car_wf grp_op_wf int_term_value_add_lemma itermAdd_wf lelt_wf int_formula_prop_eq_lemma intformeq_wf mon_itop_wf rng_times_assoc crng_times_ac_1 crng_times_comm
Rules used in proof :  axiomEquality isect_memberEquality int_eqReduceFalseSq voidElimination instantiate promote_hyp dependent_pairFormation int_eqReduceTrueSq equalityElimination unionElimination lambdaFormation cumulativity independent_functionElimination productElimination imageMemberEquality functionExtensionality independent_isectElimination functionEquality dependent_functionElimination productEquality baseClosed closedConclusion baseApply intEquality setEquality int_eqEquality sqequalRule natural_numberEquality rename setElimination because_Cache universeEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation voidEquality approximateComputation applyLambdaEquality hyp_replacement addEquality dependent_set_memberEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[i:\mBbbN{}n].  \mforall{}[k:|r|].    (|matrix-mul-row(r;k;i;M)|  =  (k  *  |M|))



Date html generated: 2018_05_21-PM-09_36_28
Last ObjectModification: 2017_12_12-PM-03_52_10

Theory : matrices


Home Index