Nuprl Lemma : invertible-matrix-iff-det

r:CRng. ∀n:ℕ. ∀A:Matrix(n;n;r).  (invertible-matrix(r;n;A) ⇐⇒ |A| in r)


Proof




Definitions occuring in Statement :  invertible-matrix: invertible-matrix(r;n;A) matrix-det: |M| matrix: Matrix(n;m;r) nat: all: x:A. B[x] iff: ⇐⇒ Q ring_divs: in r crng: CRng rng_one: 1
Definitions unfolded in proof :  nat: rng: Rng rev_implies:  Q crng: CRng prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] invertible-matrix: invertible-matrix(r;n;A) guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True squash: T infix_ap: y ring_divs: in r
Lemmas referenced :  crng_wf nat_wf matrix_wf rng_one_wf matrix-det_wf ring_divs_wf invertible-matrix_wf adjugate-property iff_weakening_equal rng_wf rng_car_wf true_wf squash_wf equal_wf det-times det-id rng_times_wf crng_times_comm identity-matrix_wf matrix-times_wf adjugate_wf matrix-scalar-mul_wf matrix-times-scalar-mul rng_sig_wf matrix-scalar-mul-mul matrix-scalar-mul-1
Rules used in proof :  because_Cache rename setElimination independent_pairFormation hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut productElimination independent_functionElimination independent_isectElimination baseClosed imageMemberEquality sqequalRule natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality dependent_pairFormation applyLambdaEquality hyp_replacement

Latex:
\mforall{}r:CRng.  \mforall{}n:\mBbbN{}.  \mforall{}A:Matrix(n;n;r).    (invertible-matrix(r;n;A)  \mLeftarrow{}{}\mRightarrow{}  |A|  |  1  in  r)



Date html generated: 2018_05_21-PM-09_39_59
Last ObjectModification: 2017_12_14-PM-01_43_02

Theory : matrices


Home Index