Nuprl Lemma : matrix-scalar-mul-times

[n,k,m:ℕ]. ∀[r:Rng]. ∀[A:Matrix(n;k;r)]. ∀[B:Matrix(k;m;r)]. ∀[c:|r|].  ((c*A*B) c*(A*B) ∈ Matrix(n;m;r))


Proof




Definitions occuring in Statement :  matrix-scalar-mul: k*M matrix-times: (M*N) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True infix_ap: y false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k ge: i ≥  int_seg: {i..j-} guard: {T} uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] rng: Rng nat: prop: squash: T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top all: x:A. B[x] matrix-scalar-mul: k*M matrix-times: (M*N) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf matrix_wf rng_wf iff_weakening_equal int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rng_times_sum_l matrix-ap_wf rng_times_wf infix_ap_wf rng_sum_wf equal_wf rng_sig_wf rng_car_wf int_seg_wf true_wf squash_wf mx_wf matrix_ap_mx_lemma rng_times_assoc
Rules used in proof :  axiomEquality baseClosed imageMemberEquality independent_pairFormation int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation unionElimination productElimination independent_isectElimination universeEquality rename setElimination intEquality because_Cache natural_numberEquality functionEquality equalitySymmetry equalityTransitivity hypothesisEquality isectElimination imageElimination lambdaEquality applyEquality hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n,k,m:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[A:Matrix(n;k;r)].  \mforall{}[B:Matrix(k;m;r)].  \mforall{}[c:|r|].    ((c*A*B)  =  c*(A*B))



Date html generated: 2018_05_21-PM-09_38_33
Last ObjectModification: 2017_12_14-PM-01_42_14

Theory : matrices


Home Index