Nuprl Lemma : matrix-plus-comm

[n,m:ℤ]. ∀[r:Rng]. ∀[M,N:Matrix(n;m;r)].  (M M ∈ Matrix(n;m;r))


Proof




Definitions occuring in Statement :  matrix-plus: N matrix: Matrix(n;m;r) uall: [x:A]. B[x] int: equal: t ∈ T rng: Rng
Definitions unfolded in proof :  true: True rng: Rng mx: matrix(M[x; y]) matrix-ap: M[i,j] matrix-plus: N matrix: Matrix(n;m;r) member: t ∈ T uall: [x:A]. B[x] squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  matrix-ap_wf rng_plus_wf infix_ap_wf rng_car_wf rng_wf matrix_wf int_seg_wf equal_wf squash_wf true_wf rng_plus_comm iff_weakening_equal
Rules used in proof :  axiomEquality isect_memberEquality because_Cache setElimination hypothesis hypothesisEquality natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule rename functionExtensionality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[r:Rng].  \mforall{}[M,N:Matrix(n;m;r)].    (M  +  N  =  N  +  M)



Date html generated: 2018_05_21-PM-09_34_34
Last ObjectModification: 2017_12_11-PM-00_29_27

Theory : matrices


Home Index