Nuprl Lemma : rng_lsum-upto
∀[n:ℤ]. ∀[r:Rng]. ∀[f:ℕn ⟶ |r|].  (Σ{r} x ∈ upto(n). f[x] = (Σ(r) 0 ≤ i < n. f[i]) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
upto: upto(n)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rng_sum: rng_sum, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
prop: ℙ
, 
squash: ↓T
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
upto: upto(n)
Lemmas referenced : 
rng_wf, 
iff_weakening_equal, 
rng_sum_wf, 
int_seg_wf, 
rng_lsum-from-upto, 
rng_car_wf, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
intEquality, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
functionExtensionality, 
natural_numberEquality, 
rename, 
setElimination, 
universeEquality, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[r:Rng].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  |r|].    (\mSigma{}\{r\}  x  \mmember{}  upto(n).  f[x]  =  (\mSigma{}(r)  0  \mleq{}  i  <  n.  f[i]))
Date html generated:
2018_05_21-PM-09_33_13
Last ObjectModification:
2017_12_15-AM-10_10_49
Theory : matrices
Home
Index