Nuprl Lemma : rng_lsum-upto

[n:ℤ]. ∀[r:Rng]. ∀[f:ℕn ⟶ |r|].  {r} x ∈ upto(n). f[x] (r) 0 ≤ i < n. f[i]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] upto: upto(n) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T rng_sum: rng_sum rng: Rng rng_car: |r|
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True so_apply: x[s] so_lambda: λ2x.t[x] rng: Rng prop: squash: T member: t ∈ T uall: [x:A]. B[x] upto: upto(n)
Lemmas referenced :  rng_wf iff_weakening_equal rng_sum_wf int_seg_wf rng_lsum-from-upto rng_car_wf true_wf squash_wf equal_wf
Rules used in proof :  intEquality axiomEquality isect_memberEquality functionEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality because_Cache functionExtensionality natural_numberEquality rename setElimination universeEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[r:Rng].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  |r|].    (\mSigma{}\{r\}  x  \mmember{}  upto(n).  f[x]  =  (\mSigma{}(r)  0  \mleq{}  i  <  n.  f[i]))



Date html generated: 2018_05_21-PM-09_33_13
Last ObjectModification: 2017_12_15-AM-10_10_49

Theory : matrices


Home Index