Nuprl Lemma : rng_lsum-from-upto
∀[a,b:ℤ]. ∀[r:Rng]. ∀[f:{a..b-} ⟶ |r|].  (Σ{r} x ∈ [a, b). f[x] = (Σ(r) a ≤ i < b. f[i]) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x], 
from-upto: [n, m), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
int: ℤ, 
equal: s = t ∈ T, 
rng_sum: rng_sum, 
rng: Rng, 
rng_car: |r|
Definitions unfolded in proof : 
less_than': less_than'(a;b), 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
rng: Rng, 
guard: {T}, 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
uimplies: b supposing a, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
infix_ap: x f y, 
has-value: (a)↓, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
from-upto: [n, m), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
squash: ↓T, 
ycomb: Y, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
grp_id: e, 
pi1: fst(t), 
pi2: snd(t), 
grp_op: *, 
add_grp_of_rng: r↓+gp, 
mon_itop: Π lb ≤ i < ub. E[i], 
rng_sum: rng_sum
Lemmas referenced : 
nat_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
lelt_wf, 
decidable__lt, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
false_wf, 
int_seg_subtype, 
decidable__equal_int, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
int_seg_properties, 
le_wf, 
rng_wf, 
rng_car_wf, 
int_seg_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
rng_lsum_nil_lemma, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
rng_plus_wf, 
int-value-type, 
value-type-has-value, 
rng_lsum_cons_lemma, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
iff_weakening_equal, 
rng_sum_unroll_lo, 
from-upto_wf, 
rng_lsum_wf, 
true_wf, 
squash_wf, 
equal_wf, 
rng_sum_wf, 
rng_zero_wf, 
imax_ub, 
imax_wf, 
assert_of_le_int, 
le_int_wf, 
ifthenelse_wf, 
add_functionality_wrt_eq, 
imax_unfold
Rules used in proof : 
cut, 
isect_memberFormation, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
applyLambdaEquality, 
applyEquality, 
unionElimination, 
productElimination, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
addEquality, 
functionEquality, 
axiomEquality, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cumulativity, 
instantiate, 
promote_hyp, 
callbyvalueReduce, 
equalityElimination, 
baseClosed, 
imageMemberEquality, 
functionExtensionality, 
productEquality, 
setEquality, 
universeEquality, 
imageElimination, 
inlFormation
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[r:Rng].  \mforall{}[f:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].    (\mSigma{}\{r\}  x  \mmember{}  [a,  b).  f[x]  =  (\mSigma{}(r)  a  \mleq{}  i  <  b.  f[i]))
Date html generated:
2018_05_21-PM-09_33_12
Last ObjectModification:
2017_12_15-AM-10_09_36
Theory : matrices
Home
Index