Nuprl Lemma : rng_lsum-from-upto

[a,b:ℤ]. ∀[r:Rng]. ∀[f:{a..b-} ⟶ |r|].  {r} x ∈ [a, b). f[x] (r) a ≤ i < b. f[i]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] from-upto: [n, m) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] int: equal: t ∈ T rng_sum: rng_sum rng: Rng rng_car: |r|
Definitions unfolded in proof :  less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} rng: Rng guard: {T} prop: and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff infix_ap: y has-value: (a)↓ ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 from-upto: [n, m) rev_implies:  Q iff: ⇐⇒ Q true: True so_apply: x[s] so_lambda: λ2x.t[x] squash: T ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] grp_id: e pi1: fst(t) pi2: snd(t) grp_op: * add_grp_of_rng: r↓+gp mon_itop: Π lb ≤ i < ub. E[i] rng_sum: rng_sum
Lemmas referenced :  nat_wf int_term_value_add_lemma itermAdd_wf lelt_wf decidable__lt int_formula_prop_eq_lemma intformeq_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_seg_properties le_wf rng_wf rng_car_wf int_seg_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties rng_lsum_nil_lemma assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert rng_plus_wf int-value-type value-type-has-value rng_lsum_cons_lemma assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf iff_weakening_equal rng_sum_unroll_lo from-upto_wf rng_lsum_wf true_wf squash_wf equal_wf rng_sum_wf rng_zero_wf imax_ub imax_wf assert_of_le_int le_int_wf ifthenelse_wf add_functionality_wrt_eq imax_unfold
Rules used in proof :  cut isect_memberFormation dependent_set_memberEquality hypothesis_subsumption applyLambdaEquality applyEquality unionElimination productElimination because_Cache equalitySymmetry equalityTransitivity addEquality functionEquality axiomEquality independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cumulativity instantiate promote_hyp callbyvalueReduce equalityElimination baseClosed imageMemberEquality functionExtensionality productEquality setEquality universeEquality imageElimination inlFormation

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[r:Rng].  \mforall{}[f:\{a..b\msupminus{}\}  {}\mrightarrow{}  |r|].    (\mSigma{}\{r\}  x  \mmember{}  [a,  b).  f[x]  =  (\mSigma{}(r)  a  \mleq{}  i  <  b.  f[i]))



Date html generated: 2018_05_21-PM-09_33_12
Last ObjectModification: 2017_12_15-AM-10_09_36

Theory : matrices


Home Index