Nuprl Lemma : provisional-apply2_wf
∀[A,B,C:Type]. ∀[f:A ⟶ B ⟶ C]. ∀[a:Provisional(A)]. ∀[b:Provisional(B)].  (provisional-apply2(f;a;b) ∈ Provisional(C))
Proof
Definitions occuring in Statement : 
provisional-apply2: provisional-apply2(f;a;b)
, 
provisional-type: Provisional(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
provisional-apply2: provisional-apply2(f;a;b)
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
Lemmas referenced : 
provision_wf, 
allowed_wf, 
allow_wf, 
sq_stable__allowed, 
squash_wf, 
provisional-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
productEquality, 
hypothesis, 
isect_memberEquality_alt, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
imageElimination, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[a:Provisional(A)].  \mforall{}[b:Provisional(B)].
    (provisional-apply2(f;a;b)  \mmember{}  Provisional(C))
Date html generated:
2020_05_20-AM-08_01_24
Last ObjectModification:
2020_05_17-PM-08_16_05
Theory : monads
Home
Index