Nuprl Lemma : provisional-apply2_wf

[A,B,C:Type]. ∀[f:A ⟶ B ⟶ C]. ∀[a:Provisional(A)]. ∀[b:Provisional(B)].  (provisional-apply2(f;a;b) ∈ Provisional(C))


Proof




Definitions occuring in Statement :  provisional-apply2: provisional-apply2(f;a;b) provisional-type: Provisional(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T provisional-apply2: provisional-apply2(f;a;b) prop: and: P ∧ Q uimplies: supposing a squash: T sq_stable: SqStable(P) implies:  Q
Lemmas referenced :  provision_wf allowed_wf allow_wf sq_stable__allowed squash_wf provisional-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality productEquality hypothesis isect_memberEquality_alt applyEquality instantiate because_Cache independent_isectElimination imageElimination productElimination independent_functionElimination imageMemberEquality baseClosed universeIsType axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType functionIsType universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[a:Provisional(A)].  \mforall{}[b:Provisional(B)].
    (provisional-apply2(f;a;b)  \mmember{}  Provisional(C))



Date html generated: 2020_05_20-AM-08_01_24
Last ObjectModification: 2020_05_17-PM-08_16_05

Theory : monads


Home Index