Nuprl Lemma : provisional-type-wf2

[T:𝕌'']. (Provisional(T) ∈ 𝕌'')


Proof




Definitions occuring in Statement :  provisional-type: Provisional(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T provisional-type: Provisional(T) prop: uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] and: P ∧ Q pi1: fst(t) implies:  Q pi2: snd(t) iff: ⇐⇒ Q so_apply: x[s1;s2] equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] cand: c∧ B rev_implies:  Q sym: Sym(T;x,y.E[x; y]) squash: T so_lambda: λ2x.t[x] so_apply: x[s] respects-equality: respects-equality(S;T) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  quotient_wf squash_wf iff_wf equal_wf uimplies_subtype istype-universe pi1_wf pi2_wf subtype-respects-equality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination productEquality universeEquality isectEquality hypothesisEquality hypothesis applyEquality lambdaEquality_alt cumulativity inhabitedIsType equalityTransitivity equalitySymmetry productElimination because_Cache functionEquality independent_isectElimination universeIsType independent_functionElimination productIsType isectIsType axiomEquality independent_pairFormation lambdaFormation_alt imageElimination imageMemberEquality baseClosed functionIsType equalityIstype isect_memberEquality_alt dependent_functionElimination

Latex:
\mforall{}[T:\mBbbU{}''].  (Provisional(T)  \mmember{}  \mBbbU{}'')



Date html generated: 2020_05_20-AM-08_01_13
Last ObjectModification: 2020_05_17-PM-08_04_25

Theory : monads


Home Index