Nuprl Lemma : fps-div-one

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)].  ((f÷1) f ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-div: (f÷g) fps-one: 1 power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng rng_one: 1
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a crng: CRng rng: Rng and: P ∧ Q cand: c∧ B all: x:A. B[x] true: True squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q fps-coeff: f[b] fps-one: 1 ifthenelse: if then else fi  bag-null: bag-null(bs) null: null(as) empty-bag: {} nil: [] it: btrue: tt rng_one: 1 pi1: fst(t) pi2: snd(t)
Lemmas referenced :  power-series_wf crng_wf deq_wf valueall-type_wf fps-one_wf rng_one_wf fps-div-unique equal_wf squash_wf true_wf mul_one_fps iff_weakening_equal rng_car_wf rng_times_one bag_null_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity universeEquality setElimination rename independent_pairFormation independent_isectElimination dependent_functionElimination natural_numberEquality applyEquality lambdaEquality imageElimination productElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].    ((f\mdiv{}1)  =  f)  supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_51
Last ObjectModification: 2017_07_26-PM-06_33_29

Theory : power!series


Home Index