Nuprl Lemma : qabs-difference-symmetry

[x,y:ℚ].  (|x y| |y x| ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qsub: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf rationals_wf qabs-qminus qsub_wf qabs_wf iff_weakening_equal qminus-qsub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[x,y:\mBbbQ{}].    (|x  -  y|  =  |y  -  x|)



Date html generated: 2018_05_21-PM-11_57_31
Last ObjectModification: 2017_07_26-PM-06_47_40

Theory : rationals


Home Index