Nuprl Lemma : qabs-qmul-case2

[r,s,a:ℚ].  (|(a r) s| (|r s| |a|) ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qsub: s qmul: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf qabs_wf rationals_wf qsub_wf qmul_wf qmul_com iff_weakening_equal qabs-qmul-case1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[r,s,a:\mBbbQ{}].    (|(a  *  r)  -  a  *  s|  =  (|r  -  s|  *  |a|))



Date html generated: 2018_05_21-PM-11_53_21
Last ObjectModification: 2017_07_26-PM-06_45_36

Theory : rationals


Home Index