Nuprl Lemma : qabs-qmul-case1
∀[r,s,a:ℚ].  (|(r * a) - s * a| = (|r - s| * |a|) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qabs: |r|
, 
qsub: r - s
, 
qmul: r * s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qsub: r - s
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
qmul_wf, 
qsub_wf, 
qadd_wf, 
qmul_assoc_qrng, 
int-subtype-rationals, 
iff_weakening_equal, 
q_distrib, 
qabs_wf, 
qabs-qmul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
universeEquality, 
because_Cache, 
minusEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[r,s,a:\mBbbQ{}].    (|(r  *  a)  -  s  *  a|  =  (|r  -  s|  *  |a|))
Date html generated:
2018_05_21-PM-11_53_16
Last ObjectModification:
2017_07_26-PM-06_45_33
Theory : rationals
Home
Index