Nuprl Lemma : qabs-qmul-case1

[r,s,a:ℚ].  (|(r a) a| (|r s| |a|) ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qsub: s qmul: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qsub: s squash: T prop: subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf rationals_wf qmul_wf qsub_wf qadd_wf qmul_assoc_qrng int-subtype-rationals iff_weakening_equal q_distrib qabs_wf qabs-qmul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut equalitySymmetry sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis universeEquality because_Cache minusEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination hyp_replacement applyLambdaEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[r,s,a:\mBbbQ{}].    (|(r  *  a)  -  s  *  a|  =  (|r  -  s|  *  |a|))



Date html generated: 2018_05_21-PM-11_53_16
Last ObjectModification: 2017_07_26-PM-06_45_33

Theory : rationals


Home Index