Nuprl Lemma : qabs-qmul
∀[r,s:ℚ]. (|r * s| = (|r| * |s|) ∈ ℚ)
Proof
Definitions occuring in Statement :
qabs: |r|
,
qmul: r * s
,
rationals: ℚ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
qabs: |r|
,
uimplies: b supposing a
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
subtype_rel: A ⊆r B
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
ifthenelse: if b then t else f fi
,
squash: ↓T
,
rev_uimplies: rev_uimplies(P;Q)
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
cand: A c∧ B
,
prop: ℙ
,
guard: {T}
,
rev_implies: P
⇐ Q
,
bfalse: ff
,
not: ¬A
,
true: True
,
false: False
Lemmas referenced :
q_trichotomy,
valueall-type-has-valueall,
rationals-valueall-type,
evalall-reduce,
qmul_wf,
qpositive_wf,
bool_wf,
uiff_transitivity,
equal-wf-T-base,
assert_wf,
qless_wf,
int-subtype-rationals,
eqtt_to_assert,
assert-qpositive,
equal_wf,
ite_rw_true,
qmul-positive,
iff_weakening_equal,
iff_transitivity,
bnot_wf,
not_wf,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
qmul_over_minus_qrng,
or_wf,
qminus-positive,
qless_transitivity,
qless_irreflexivity,
qmul_ac_1_qrng,
qmul_assoc_qrng,
qmul_assoc,
qinv_inv_q,
rationals_wf,
squash_wf,
true_wf,
qmul_zero_qrng
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
sqequalRule,
isectElimination,
because_Cache,
independent_isectElimination,
hypothesis,
callbyvalueReduce,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
baseClosed,
natural_numberEquality,
applyEquality,
independent_functionElimination,
productElimination,
lambdaEquality,
imageElimination,
inlFormation,
independent_pairFormation,
productEquality,
minusEquality,
imageMemberEquality,
impliesFunctionality,
addLevel,
orFunctionality,
promote_hyp,
andLevelFunctionality,
voidElimination,
isect_memberEquality,
axiomEquality,
hyp_replacement,
applyLambdaEquality,
universeEquality,
inrFormation
Latex:
\mforall{}[r,s:\mBbbQ{}]. (|r * s| = (|r| * |s|))
Date html generated:
2018_05_21-PM-11_53_06
Last ObjectModification:
2017_07_26-PM-06_45_27
Theory : rationals
Home
Index