Nuprl Lemma : qadd-non-neg

[a,b:ℚ].  (0 ≤ (a b)) supposing ((0 ≤ b) and (0 ≤ a))


Proof




Definitions occuring in Statement :  qle: r ≤ s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B guard: {T} uiff: uiff(P;Q) and: P ∧ Q implies:  Q prop: true: True squash: T iff: ⇐⇒ Q
Lemmas referenced :  iff_weakening_equal mon_ident_q qadd_comm_q true_wf squash_wf qle_transitivity_qorder rationals_wf qle_wf qadd_wf int-subtype-rationals qle_witness qadd_preserves_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis applyEquality because_Cache sqequalRule hypothesisEquality productElimination independent_isectElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    (0  \mleq{}  (a  +  b))  supposing  ((0  \mleq{}  b)  and  (0  \mleq{}  a))



Date html generated: 2016_05_15-PM-11_04_52
Last ObjectModification: 2016_01_16-PM-09_28_05

Theory : rationals


Home Index