Nuprl Lemma : qadd-non-neg
∀[a,b:ℚ].  (0 ≤ (a + b)) supposing ((0 ≤ b) and (0 ≤ a))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qadd: r + s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
iff_weakening_equal, 
mon_ident_q, 
qadd_comm_q, 
true_wf, 
squash_wf, 
qle_transitivity_qorder, 
rationals_wf, 
qle_wf, 
qadd_wf, 
int-subtype-rationals, 
qle_witness, 
qadd_preserves_qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[a,b:\mBbbQ{}].    (0  \mleq{}  (a  +  b))  supposing  ((0  \mleq{}  b)  and  (0  \mleq{}  a))
Date html generated:
2016_05_15-PM-11_04_52
Last ObjectModification:
2016_01_16-PM-09_28_05
Theory : rationals
Home
Index