Nuprl Lemma : qlog-lemma-ext

e:{e:ℚ0 < e} . ∀q:{q:ℚ(e ≤ q) ∧ q < 1} .  {nr:ℕ × ℚlet n,r nr in (r q ↑ n ∈ ℚ) ∧ (e ≤ r) ∧ r < e} 


Proof




Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s qless: r < s qmul: s rationals: nat: all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T qlog-lemma uniform-comp-nat-induction decidable__qless ifthenelse: if then else fi  uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T btrue: tt genrec-ap: genrec-ap
Lemmas referenced :  qlog-lemma lifting-strict-decide top_wf equal_wf has-value_wf_base base_wf is-exception_wf uniform-comp-nat-induction decidable__qless
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation

Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (e  \mleq{}  q)  \mwedge{}  q  <  1\}  .
    \{nr:\mBbbN{}  \mtimes{}  \mBbbQ{}|  let  n,r  =  nr  in  (r  =  q  \muparrow{}  n)  \mwedge{}  (e  \mleq{}  r)  \mwedge{}  r  *  r  <  e\} 



Date html generated: 2018_05_22-AM-00_11_07
Last ObjectModification: 2017_07_26-PM-06_52_29

Theory : rationals


Home Index