Nuprl Lemma : qlog-lemma

e:{e:ℚ0 < e} . ∀q:{q:ℚ(e ≤ q) ∧ q < 1} .  {nr:ℕ × ℚlet n,r nr in (r q ↑ n ∈ ℚ) ∧ (e ≤ r) ∧ r < e} 


Proof




Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s qless: r < s qmul: s rationals: nat: all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T cand: c∧ B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) top: Top sq_type: SQType(T) less_than': less_than'(a;b) subtract: m sq_stable: SqStable(P) pi1: fst(t)
Lemmas referenced :  rationals_wf qle_wf qless_wf int-subtype-rationals uniform-comp-nat-induction nat_plus_wf equal_wf qexp_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le qmul_wf set_wf nat_wf istype-nat set-value-type int-value-type rationals-value-type decidable__qless nat_plus_subtype_nat int_seg_wf int_seg_properties squash_wf true_wf subtype_rel_self iff_weakening_equal subtract_wf decidable__lt itermSubtract_wf int_term_value_subtract_lemma istype-less_than qless_complement_qorder qless_transitivity_2_qorder qmul_preserves_qle trivial-int-eq1 qexp-add qexp-positive qle-minus qmul_com qmul_ac_1_qrng qminus-minus qexp-one le_wf istype-void qle_weakening_lt_qorder qexp_preserves_qle qle_weakening_eq_qorder qless_irreflexivity intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma subtype_base_sq int_subtype_base mul-commutes istype-universe qexp-mul exp_unroll_q add-commutes qexp1 sq_stable_from_decidable not_wf qmul_assoc subtract-add-cancel decidable__equal_int qlog-bound pi1_wf_top subtract_nat_wf subtract-is-int-iff false_wf decidable__qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut setIsType universeIsType introduction extract_by_obid hypothesis sqequalRule productIsType sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality closedConclusion natural_numberEquality applyEquality lambdaEquality_alt functionEquality setEquality productEquality dependent_set_memberEquality_alt dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination because_Cache spreadEquality inhabitedIsType isect_memberFormation_alt intEquality multiplyEquality cutEval equalityTransitivity equalitySymmetry equalityIstype isectIsType functionIsType productElimination imageElimination independent_pairEquality imageMemberEquality baseClosed instantiate universeEquality hyp_replacement applyLambdaEquality minusEquality isect_memberEquality_alt promote_hyp cumulativity pointwiseFunctionality baseApply

Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (e  \mleq{}  q)  \mwedge{}  q  <  1\}  .
    \{nr:\mBbbN{}  \mtimes{}  \mBbbQ{}|  let  n,r  =  nr  in  (r  =  q  \muparrow{}  n)  \mwedge{}  (e  \mleq{}  r)  \mwedge{}  r  *  r  <  e\} 



Date html generated: 2020_05_20-AM-09_26_50
Last ObjectModification: 2020_01_01-AM-11_45_02

Theory : rationals


Home Index