Nuprl Lemma : qexp-add

[m,n:ℕ]. ∀[b:ℚ].  (b ↑ (b ↑ b ↑ m) ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qmul: s rationals: nat: uall: [x:A]. B[x] add: m equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q true: True squash: T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + sq_type: SQType(T)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf rationals_wf nat_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma qexp_wf itermAdd_wf int_term_value_add_lemma le_wf add-zero uall_wf squash_wf true_wf equal_wf qmul_wf exp_zero_q iff_weakening_equal qmul_one_qrng exp_unroll_q decidable__lt subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma qmul_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination because_Cache dependent_set_memberEquality addEquality applyEquality imageElimination equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality imageMemberEquality baseClosed productElimination instantiate

Latex:
\mforall{}[m,n:\mBbbN{}].  \mforall{}[b:\mBbbQ{}].    (b  \muparrow{}  n  +  m  =  (b  \muparrow{}  n  *  b  \muparrow{}  m))



Date html generated: 2018_05_22-AM-00_01_09
Last ObjectModification: 2017_07_26-PM-06_49_57

Theory : rationals


Home Index