Nuprl Lemma : qexp_preserves_qle
∀[a,b:ℚ].  (∀[n:ℕ]. (a ↑ n ≤ b ↑ n)) supposing ((a ≤ b) and (0 ≤ a))
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qle: r ≤ s
, 
rationals: ℚ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qge: a ≥ b
Lemmas referenced : 
qle_weakening_eq_qorder, 
qmul_functionality_wrt_qle, 
qle_functionality_wrt_implies, 
qexp-nonneg, 
qmul_wf, 
exp_unroll_q, 
rationals_wf, 
int-subtype-rationals, 
nat_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
le_wf, 
qle_reflexivity, 
iff_weakening_equal, 
exp_zero_q, 
true_wf, 
squash_wf, 
qle_wf, 
qexp_wf, 
qle_witness, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
because_Cache, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
dependent_set_memberEquality, 
unionElimination
Latex:
\mforall{}[a,b:\mBbbQ{}].    (\mforall{}[n:\mBbbN{}].  (a  \muparrow{}  n  \mleq{}  b  \muparrow{}  n))  supposing  ((a  \mleq{}  b)  and  (0  \mleq{}  a))
Date html generated:
2016_05_15-PM-11_09_49
Last ObjectModification:
2016_01_16-PM-09_25_09
Theory : rationals
Home
Index