Nuprl Lemma : qlog-bound

e:{e:ℚ0 < e} . ∀q:{q:ℚ(e ≤ q) ∧ q < 1} .  ∃N:ℕ+q ↑ N < e


Proof




Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s qless: r < s rationals: nat_plus: + all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q sq_stable: SqStable(P) squash: T false: False uimplies: supposing a exists: x:A. B[x] cand: c∧ B guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) true: True qsub: s qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_type: SQType(T) qeq: qeq(r;s) eq_int: (i =z j) bfalse: ff assert: b subtract: m le: A ≤ B less_than': less_than'(a;b) gt: i > j nat:
Lemmas referenced :  set_wf rationals_wf qle_wf qless_wf int-subtype-rationals decidable__qless sq_stable_from_decidable small-reciprocal squash_wf decidable__cand decidable__qle sq_stable__and qless_witness qsub_wf qdiv_wf qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity equal-wf-T-base qadd_preserves_qless qadd_wf true_wf qmul_one_qrng qadd_comm_q qadd_ac_1_q mon_ident_q qadd_assoc iff_weakening_equal qmul_preserves_qless qmul_wf qmul-qdiv-cancel subtype_rel_set less_than_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf int-equal-in-rationals not_wf decidable__lt decidable__equal_int intformnot_wf int_formula_prop_not_lemma subtype_base_sq int_subtype_base equal_wf qdiv-self assert-qeq equal-wf-base qless_transitivity qless-int mul_nat_plus subtract_wf false_wf not-lt-2 less-iff-le condition-implies-le minus-add nat_plus_wf minus-minus minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-swap le-add-cancel qexp_wf nat_plus_subtype_nat mul_bounds_1b qexp-greater-one qinv-positive decidable__le intformle_wf itermMultiply_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_mul_lemma int_term_value_subtract_lemma le_wf qadd-add itermAdd_wf int_term_value_add_lemma qmul-mul qmul_assoc_qrng qmul_ac_1_qrng qexp-non-zero qexp-qdiv qexp-one qexp-positive-iff assert_wf isEven_wf qmul_comm_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality productEquality setElimination rename hypothesisEquality natural_numberEquality applyEquality because_Cache dependent_functionElimination unionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination voidElimination isect_memberEquality independent_isectElimination productElimination minusEquality equalityTransitivity equalitySymmetry universeEquality dependent_pairFormation intEquality int_eqEquality voidEquality independent_pairFormation computeAll addLevel impliesFunctionality instantiate cumulativity hyp_replacement applyLambdaEquality dependent_set_memberEquality addEquality multiplyEquality isect_memberFormation inrFormation inlFormation

Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (e  \mleq{}  q)  \mwedge{}  q  <  1\}  .    \mexists{}N:\mBbbN{}\msupplus{}.  q  \muparrow{}  N  <  e



Date html generated: 2018_05_22-AM-00_08_57
Last ObjectModification: 2017_07_26-PM-06_52_18

Theory : rationals


Home Index