Nuprl Lemma : qlog-bound
∀e:{e:ℚ| 0 < e} . ∀q:{q:ℚ| (e ≤ q) ∧ q < 1} .  ∃N:ℕ+. q ↑ N < e
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
false: False
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
qsub: r - s
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
sq_type: SQType(T)
, 
qeq: qeq(r;s)
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
assert: ↑b
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
gt: i > j
, 
nat: ℕ
Lemmas referenced : 
set_wf, 
rationals_wf, 
qle_wf, 
qless_wf, 
int-subtype-rationals, 
decidable__qless, 
sq_stable_from_decidable, 
small-reciprocal, 
squash_wf, 
decidable__cand, 
decidable__qle, 
sq_stable__and, 
qless_witness, 
qsub_wf, 
qdiv_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
equal-wf-T-base, 
qadd_preserves_qless, 
qadd_wf, 
true_wf, 
qmul_one_qrng, 
qadd_comm_q, 
qadd_ac_1_q, 
mon_ident_q, 
qadd_assoc, 
iff_weakening_equal, 
qmul_preserves_qless, 
qmul_wf, 
qmul-qdiv-cancel, 
subtype_rel_set, 
less_than_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
int-equal-in-rationals, 
not_wf, 
decidable__lt, 
decidable__equal_int, 
intformnot_wf, 
int_formula_prop_not_lemma, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
qdiv-self, 
assert-qeq, 
equal-wf-base, 
qless_transitivity, 
qless-int, 
mul_nat_plus, 
subtract_wf, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
nat_plus_wf, 
minus-minus, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-swap, 
le-add-cancel, 
qexp_wf, 
nat_plus_subtype_nat, 
mul_bounds_1b, 
qexp-greater-one, 
qinv-positive, 
decidable__le, 
intformle_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
qadd-add, 
itermAdd_wf, 
int_term_value_add_lemma, 
qmul-mul, 
qmul_assoc_qrng, 
qmul_ac_1_qrng, 
qexp-non-zero, 
qexp-qdiv, 
qexp-one, 
qexp-positive-iff, 
assert_wf, 
isEven_wf, 
qmul_comm_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
productElimination, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_pairFormation, 
intEquality, 
int_eqEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
impliesFunctionality, 
instantiate, 
cumulativity, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
multiplyEquality, 
isect_memberFormation, 
inrFormation, 
inlFormation
Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (e  \mleq{}  q)  \mwedge{}  q  <  1\}  .    \mexists{}N:\mBbbN{}\msupplus{}.  q  \muparrow{}  N  <  e
Date html generated:
2018_05_22-AM-00_08_57
Last ObjectModification:
2017_07_26-PM-06_52_18
Theory : rationals
Home
Index