Nuprl Lemma : qexp-non-zero

[n:ℕ]. ∀[r:ℚ].  ¬(r ↑ 0 ∈ ℚsupposing ¬(r 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n rationals: nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B true: True uiff: uiff(P;Q) qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b nat_plus: + cand: c∧ B guard: {T} squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base qexp_wf not_wf rationals_wf false_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf int-subtype-rationals assert-qeq equal-wf-base qmul-not-zero squash_wf true_wf equal_wf qexp-zero iff_weakening_equal exp_unroll_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination because_Cache baseClosed equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination applyEquality productElimination imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[r:\mBbbQ{}].    \mneg{}(r  \muparrow{}  n  =  0)  supposing  \mneg{}(r  =  0)



Date html generated: 2018_05_22-AM-00_00_26
Last ObjectModification: 2017_07_26-PM-06_49_22

Theory : rationals


Home Index