Nuprl Lemma : qexp-greater-one

e:{e:ℚ0 < e} . ∀r:{r:ℚe < r} . ∀n:ℕ.  (n e) < r ↑ supposing 1 ≤ n


Proof




Definitions occuring in Statement :  qexp: r ↑ n qless: r < s qmul: s qadd: s rationals: nat: uimplies: supposing a le: A ≤ B all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b uiff: uiff(P;Q) qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt rev_uimplies: rev_uimplies(P;Q) cand: c∧ B qge: a ≥ b qgt: a > b nat_plus: + qsub: s
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf qless_witness qadd_wf qmul_wf qexp_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma sq_stable_from_decidable qless_wf int-subtype-rationals decidable__qless nat_wf set_wf rationals_wf decidable__equal_int subtype_base_sq int_subtype_base squash_wf true_wf qexp1 iff_weakening_equal qmul_ident qexp_preserves_qless false_wf qless-int qadd_preserves_qless qless_transitivity qle_weakening_lt_qorder qadd_comm_q mon_ident_q qexp2 qmul_over_plus_qrng qmul_one_qrng mon_assoc_q q_distrib qmul-positive qless_functionality_wrt_implies_1 qle_weakening_eq_qorder qadd_ac_1_q qinverse_q qadd_inv_assoc_q qadd_assoc intformeq_wf int_formula_prop_eq_lemma qmul_functionality_wrt_qless2 qexp-nonneg qless_transitivity_2_qorder exp_unroll_q qsub-sub equal_wf qmul_over_minus_qrng qmul_comm_qrng qmul_assoc_qrng decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination applyEquality because_Cache equalityTransitivity equalitySymmetry isect_memberFormation productElimination unionElimination dependent_set_memberEquality imageMemberEquality baseClosed imageElimination instantiate cumulativity universeEquality minusEquality inlFormation productEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}r:\{r:\mBbbQ{}|  1  +  e  <  r\}  .  \mforall{}n:\mBbbN{}.    1  +  (n  *  e)  <  r  \muparrow{}  n  supposing  1  \mleq{}  n



Date html generated: 2018_05_22-AM-00_01_56
Last ObjectModification: 2017_07_26-PM-06_50_28

Theory : rationals


Home Index