Nuprl Lemma : qexp-greater-one
∀e:{e:ℚ| 0 < e} . ∀r:{r:ℚ| 1 + e < r} . ∀n:ℕ.  1 + (n * e) < r ↑ n supposing 1 ≤ n
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qless: r < s
, 
qmul: r * s
, 
qadd: r + s
, 
rationals: ℚ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
qge: a ≥ b
, 
qgt: a > b
, 
nat_plus: ℕ+
, 
qsub: r - s
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
qless_witness, 
qadd_wf, 
qmul_wf, 
qexp_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
sq_stable_from_decidable, 
qless_wf, 
int-subtype-rationals, 
decidable__qless, 
nat_wf, 
set_wf, 
rationals_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
squash_wf, 
true_wf, 
qexp1, 
iff_weakening_equal, 
qmul_ident, 
qexp_preserves_qless, 
false_wf, 
qless-int, 
qadd_preserves_qless, 
qless_transitivity, 
qle_weakening_lt_qorder, 
qadd_comm_q, 
mon_ident_q, 
qexp2, 
qmul_over_plus_qrng, 
qmul_one_qrng, 
mon_assoc_q, 
q_distrib, 
qmul-positive, 
qless_functionality_wrt_implies_1, 
qle_weakening_eq_qorder, 
qadd_ac_1_q, 
qinverse_q, 
qadd_inv_assoc_q, 
qadd_assoc, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
qmul_functionality_wrt_qless2, 
qexp-nonneg, 
qless_transitivity_2_qorder, 
exp_unroll_q, 
qsub-sub, 
equal_wf, 
qmul_over_minus_qrng, 
qmul_comm_qrng, 
qmul_assoc_qrng, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
productElimination, 
unionElimination, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
cumulativity, 
universeEquality, 
minusEquality, 
inlFormation, 
productEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}r:\{r:\mBbbQ{}|  1  +  e  <  r\}  .  \mforall{}n:\mBbbN{}.    1  +  (n  *  e)  <  r  \muparrow{}  n  supposing  1  \mleq{}  n
Date html generated:
2018_05_22-AM-00_01_56
Last ObjectModification:
2017_07_26-PM-06_50_28
Theory : rationals
Home
Index