Nuprl Lemma : qexp-mul

[m,n:ℕ]. ∀[b:ℚ].  (b ↑ b ↑ n ↑ m ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n rationals: nat: uall: [x:A]. B[x] multiply: m equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: squash: T so_lambda: λ2x.t[x] decidable: Dec(P) or: P ∨ Q true: True so_apply: x[s] subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + subtract: m
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf rationals_wf nat_wf uall_wf squash_wf true_wf equal_wf qexp_wf decidable__le intformnot_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_mul_lemma le_wf exp_zero_q iff_weakening_equal subtract_wf itermSubtract_wf int_term_value_subtract_lemma int-subtype-rationals mul-commutes zero-mul qexp-zero mul_bounds_1a exp_unroll_q qmul_wf qexp-add mul-distributes add-associates add-swap add-commutes add-mul-special zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality applyEquality imageElimination equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality because_Cache dependent_set_memberEquality multiplyEquality unionElimination imageMemberEquality baseClosed productElimination minusEquality

Latex:
\mforall{}[m,n:\mBbbN{}].  \mforall{}[b:\mBbbQ{}].    (b  \muparrow{}  n  *  m  =  b  \muparrow{}  n  \muparrow{}  m)



Date html generated: 2018_05_22-AM-00_01_15
Last ObjectModification: 2017_07_26-PM-06_50_03

Theory : rationals


Home Index