Nuprl Lemma : qle-minus

[a,b:ℚ].  uiff(a ≤ b;-(b) ≤ -(a))


Proof




Definitions occuring in Statement :  qle: r ≤ s qmul: s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A implies:  Q subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q int_nzero: -o nequal: a ≠ b ∈  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: qmul: s qle: r ≤ s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt grp_leq: a ≤ b qadd_grp: <ℚ+> grp_le: b pi2: snd(t) pi1: fst(t) infix_ap: y q_le: q_le(r;s) qeq: qeq(r;s) qsub: s qpositive: qpositive(r) qadd: s so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ has-valueall: has-valueall(a) bfalse: ff uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) sq_type: SQType(T) guard: {T} band: p ∧b q rev_implies:  Q
Lemmas referenced :  q-elim nat_plus_properties iff_weakening_uiff assert_wf qeq_wf2 int-subtype-rationals equal-wf-base rationals_wf int_subtype_base assert-qeq istype-assert qdiv-int-elim full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf nequal_wf valueall-type-has-valueall product-valueall-type int-valueall-type evalall-reduce uiff_wf qle_wf qdiv_wf qmul_wf qle_witness decidable__or less_than_wf decidable__cand istype-less_than decidable__lt decidable__equal_int intformnot_wf intformor_wf itermAdd_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_or_lemma int_term_value_add_lemma int_term_value_mul_lemma bor_wf lt_int_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert_of_lt_int bfalse_wf eq_int_wf mul-associates mul-commutes one-mul add-commutes iff_transitivity assert_of_bor assert_of_band assert_of_eq_int assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination hypothesis setElimination rename lambdaFormation_alt independent_functionElimination applyEquality sqequalRule closedConclusion natural_numberEquality baseClosed because_Cache dependent_set_memberEquality_alt independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination equalityIstype inhabitedIsType sqequalBase equalitySymmetry intEquality callbyvalueReduce sqleReflexivity isintReduceTrue minusEquality productEquality independent_pairEquality multiplyEquality addEquality hyp_replacement applyLambdaEquality isect_memberEquality_alt isectIsTypeImplies equalityTransitivity unionEquality baseApply unionElimination inlFormation_alt unionIsType productIsType instantiate cumulativity promote_hyp inrFormation_alt

Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(a  \mleq{}  b;-(b)  \mleq{}  -(a))



Date html generated: 2020_05_20-AM-09_16_37
Last ObjectModification: 2020_01_25-AM-11_55_28

Theory : rationals


Home Index