Nuprl Lemma : qroot-ext
∀k:{2...}. ∀a:{a:ℚ| (0 ≤ a) ∨ (↑isOdd(k))} . ∀n:ℕ+. (∃q:ℚ [((0 ≤ a
⇐⇒ 0 ≤ q) ∧ |q ↑ k - a| < (1/n))])
Proof
Definitions occuring in Statement :
qexp: r ↑ n
,
qabs: |r|
,
qle: r ≤ s
,
qless: r < s
,
qsub: r - s
,
qdiv: (r/s)
,
rationals: ℚ
,
isOdd: isOdd(n)
,
int_upper: {i...}
,
nat_plus: ℕ+
,
assert: ↑b
,
all: ∀x:A. B[x]
,
sq_exists: ∃x:A [B[x]]
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
natural_number: $n
Definitions unfolded in proof :
member: t ∈ T
,
experimental: experimental{impliesFunctionality}(possibleextract)
,
eq_int: (i =z j)
,
btrue: tt
,
it: ⋅
,
bfalse: ff
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
subtract: n - m
,
absval: |i|
,
divide: n ÷ m
,
lt_int: i <z j
,
isOdd: isOdd(n)
,
modulus: a mod n
,
remainder: n rem m
,
qsub: r - s
,
qadd: r + s
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
outl: outl(x)
,
bottom: ⊥
,
outr: outr(x)
,
qpositive: qpositive(r)
,
bor: p ∨bq
,
qeq: qeq(r;s)
,
qroot,
better-q-elim,
iroot-lemma2,
sq_stable_from_decidable,
decidable__or,
decidable__qle,
decidable__assert,
q-elim,
sq_stable__from_stable,
stable__from_decidable,
any: any x
,
uall: ∀[x:A]. B[x]
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
top: Top
,
uimplies: b supposing a
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
strict4: strict4(F)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
prop: ℙ
,
or: P ∨ Q
,
squash: ↓T
Lemmas referenced :
qroot,
lifting-strict-spread,
istype-void,
strict4-apply,
strict4-spread,
lifting-strict-decide,
has-value_wf_base,
istype-base,
is-exception_wf,
istype-universe,
lifting-strict-int_eq,
strict4-decide,
lifting-strict-callbyvalue,
value-type-has-value,
int-value-type,
lifting-strict-less,
better-q-elim,
iroot-lemma2,
sq_stable_from_decidable,
decidable__or,
decidable__qle,
decidable__assert,
q-elim,
sq_stable__from_stable,
stable__from_decidable
Rules used in proof :
introduction,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
instantiate,
extract_by_obid,
hypothesis,
sqequalRule,
thin,
sqequalHypSubstitution,
equalityTransitivity,
equalitySymmetry,
isectElimination,
baseClosed,
isect_memberEquality_alt,
voidElimination,
independent_isectElimination,
independent_pairFormation,
lambdaFormation_alt,
callbyvalueCallbyvalue,
callbyvalueReduce,
universeIsType,
baseApply,
closedConclusion,
hypothesisEquality,
callbyvalueExceptionCases,
inrFormation_alt,
imageMemberEquality,
imageElimination,
exceptionSqequal,
inlFormation_alt,
because_Cache,
callbyvalueAdd,
productElimination,
intEquality,
addExceptionCases,
callbyvalueMultiply,
multiplyExceptionCases
Latex:
\mforall{}k:\{2...\}. \mforall{}a:\{a:\mBbbQ{}| (0 \mleq{} a) \mvee{} (\muparrow{}isOdd(k))\} . \mforall{}n:\mBbbN{}\msupplus{}.
(\mexists{}q:\mBbbQ{} [((0 \mleq{} a \mLeftarrow{}{}\mRightarrow{} 0 \mleq{} q) \mwedge{} |q \muparrow{} k - a| < (1/n))])
Date html generated:
2019_10_16-PM-00_37_45
Last ObjectModification:
2019_06_26-PM-04_15_04
Theory : rationals
Home
Index