Nuprl Lemma : qroot-ext

k:{2...}. ∀a:{a:ℚ(0 ≤ a) ∨ (↑isOdd(k))} . ∀n:ℕ+.  (∃q:ℚ [((0 ≤ ⇐⇒ 0 ≤ q) ∧ |q ↑ a| < (1/n))])


Proof




Definitions occuring in Statement :  qexp: r ↑ n qabs: |r| qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) rationals: isOdd: isOdd(n) int_upper: {i...} nat_plus: + assert: b all: x:A. B[x] sq_exists: x:A [B[x]] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  member: t ∈ T experimental: experimental{impliesFunctionality}(possibleextract) eq_int: (i =z j) btrue: tt it: bfalse: ff band: p ∧b q ifthenelse: if then else fi  subtract: m absval: |i| divide: n ÷ m lt_int: i <j isOdd: isOdd(n) modulus: mod n remainder: rem m qsub: s qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) outl: outl(x) bottom: outr: outr(x) qpositive: qpositive(r) bor: p ∨bq qeq: qeq(r;s) qroot better-q-elim iroot-lemma2 sq_stable_from_decidable decidable__or decidable__qle decidable__assert q-elim sq_stable__from_stable stable__from_decidable any: any x uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T
Lemmas referenced :  qroot lifting-strict-spread istype-void strict4-apply strict4-spread lifting-strict-decide has-value_wf_base istype-base is-exception_wf istype-universe lifting-strict-int_eq strict4-decide lifting-strict-callbyvalue value-type-has-value int-value-type lifting-strict-less better-q-elim iroot-lemma2 sq_stable_from_decidable decidable__or decidable__qle decidable__assert q-elim sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueCallbyvalue callbyvalueReduce universeIsType baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inrFormation_alt imageMemberEquality imageElimination exceptionSqequal inlFormation_alt because_Cache callbyvalueAdd productElimination intEquality addExceptionCases callbyvalueMultiply multiplyExceptionCases

Latex:
\mforall{}k:\{2...\}.  \mforall{}a:\{a:\mBbbQ{}|  (0  \mleq{}  a)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
    (\mexists{}q:\mBbbQ{}  [((0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  q)  \mwedge{}  |q  \muparrow{}  k  -  a|  <  (1/n))])



Date html generated: 2019_10_16-PM-00_37_45
Last ObjectModification: 2019_06_26-PM-04_15_04

Theory : rationals


Home Index