Nuprl Lemma : qroot

k:{2...}. ∀a:{a:ℚ(0 ≤ a) ∨ (↑isOdd(k))} . ∀n:ℕ+.  (∃q:ℚ [((0 ≤ ⇐⇒ 0 ≤ q) ∧ |q ↑ a| < (1/n))])


Proof




Definitions occuring in Statement :  qexp: r ↑ n qabs: |r| qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) rationals: isOdd: isOdd(n) int_upper: {i...} nat_plus: + assert: b all: x:A. B[x] sq_exists: x:A [B[x]] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T prop: or: P ∨ Q subtype_rel: A ⊆B int_upper: {i...} implies:  Q sq_stable: SqStable(P) squash: T exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False so_apply: x[s] sq_exists: x:A [B[x]] sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) bfalse: ff band: p ∧b q ifthenelse: if then else fi  bool: 𝔹 decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nat: unit: Unit it: btrue: tt bnot: ¬bb assert: b qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) eq_int: (i =z j) nequal: a ≠ b ∈  subtract: m less_than: a < b true: True ge: i ≥  exp: i^n primrec: primrec(n;b;c) rev_uimplies: rev_uimplies(P;Q) isOdd: isOdd(n) qsub: s qmul: s qabs: |r| has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  sq_stable_from_decidable qle_wf assert_wf isOdd_wf decidable__or decidable__qle decidable__assert better-q-elim nat_plus_properties iff_weakening_uiff qeq_wf2 equal-wf-base rationals_wf int_subtype_base assert-qeq int-subtype-rationals istype-assert qdiv_wf or_wf sq_exists_wf iff_wf qless_wf qabs_wf qsub_wf qexp_wf upper_subtype_nat istype-false subtype_rel_set less_than_wf int_nzero-rational nat_plus_inc_int_nzero nat_plus_wf istype-int_upper bool_wf eq_int_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf btrue_wf assert_of_eq_int bfalse_wf set-value-type equal_wf union-value-type unit_wf2 ifthenelse_wf int_upper_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than mul_nat_plus intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma int-value-type exp-fastexp subtract_wf decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma istype-le exp_wf_nat_plus itermMultiply_wf int_term_value_mul_lemma eqff_to_assert bool_cases_sqequal assert-bnot set_subtype_base neg_assert_of_eq_int btrue_neq_bfalse intformeq_wf int_formula_prop_eq_lemma mul_preserves_le nat_plus_subtype_nat le_wf add-associates add-swap add-commutes squash_wf true_wf nat_wf nat_properties ge_wf le_witness_for_triv exp_wf2 subtract-1-ge-0 exp_step not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add_functionality_wrt_le add-zero le-add-cancel le_weakening2 subtract-add-cancel add-subtract-cancel exp_preserves_le itermAdd_wf int_term_value_add_lemma minus-minus iroot-lemma2 absval_wf lt_int_wf assert_of_lt_int qdiv-non-neg1 qless-int qle-int qmul_preserves_qle2 qle_witness qmul_wf qmul_zero_qrng subtype_rel_self qmul-qdiv-cancel iff_weakening_equal bnot_wf not_wf iff_transitivity assert_of_bnot decidable__equal_int itermMinus_wf int_term_value_minus_lemma zero-mul istype-universe exp-zero multiply-is-int-iff add-is-int-iff mul_bounds_1a exp_wf4 false_wf absval_unfold istype-top mul_preserves_lt uiff_transitivity exp_wf3 qmul-preserves-eq qmul-mul qmul_ac_1_qrng qmul_comm_qrng int-equal-in-rationals assert_of_band not_assert_elim qmul_preserves_qless equal-wf-T-base qmul_one_qrng qmul-qdiv-cancel3 int_upper_wf exp-of-mul le_int_wf assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int qexp-non-zero modulus_wf_int_mod int-subtype-int_mod int_mod_wf qexp-qdiv qexp-exp exp-minusone qmul_preserves_qle qadd_wf qmul_over_plus_qrng qadd-add qabs-qminus qinv_inv_q qadd_comm_q qmul_over_minus_qrng qmul_assoc qadd_preserves_qless qless_transitivity_1_qorder valueall-type-has-valueall rationals-valueall-type evalall-reduce qpositive_wf assert-qpositive qadd_inv_assoc_q mon_ident_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt setElimination thin rename cut introduction extract_by_obid sqequalHypSubstitution isectElimination sqequalRule unionEquality natural_numberEquality hypothesis applyEquality because_Cache hypothesisEquality independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination productElimination unionIsType universeIsType independent_isectElimination hyp_replacement equalitySymmetry applyLambdaEquality functionEquality lambdaEquality_alt productEquality independent_pairFormation intEquality inhabitedIsType setIsType unionElimination instantiate cumulativity equalityTransitivity cutEval dependent_set_memberEquality_alt equalityIstype approximateComputation dependent_pairFormation_alt isect_memberEquality_alt voidElimination int_eqEquality multiplyEquality equalityElimination closedConclusion promote_hyp equalityIsType4 baseApply equalityIsType2 equalityIsType1 addEquality minusEquality intWeakElimination functionIsTypeImplies dependent_set_memberFormation_alt productIsType functionIsType isect_memberFormation_alt universeEquality pointwiseFunctionality lessCases axiomSqEquality sqequalBase callbyvalueReduce

Latex:
\mforall{}k:\{2...\}.  \mforall{}a:\{a:\mBbbQ{}|  (0  \mleq{}  a)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
    (\mexists{}q:\mBbbQ{}  [((0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  q)  \mwedge{}  |q  \muparrow{}  k  -  a|  <  (1/n))])



Date html generated: 2019_10_16-PM-00_37_36
Last ObjectModification: 2019_06_25-PM-00_20_44

Theory : rationals


Home Index