Nuprl Lemma : qroot
∀k:{2...}. ∀a:{a:ℚ| (0 ≤ a) ∨ (↑isOdd(k))} . ∀n:ℕ+.  (∃q:ℚ [((0 ≤ a 
⇐⇒ 0 ≤ q) ∧ |q ↑ k - a| < (1/n))])
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qabs: |r|
, 
qle: r ≤ s
, 
qless: r < s
, 
qsub: r - s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
isOdd: isOdd(n)
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
nat: ℕ
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bnot: ¬bb
, 
assert: ↑b
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
eq_int: (i =z j)
, 
nequal: a ≠ b ∈ T 
, 
subtract: n - m
, 
less_than: a < b
, 
true: True
, 
ge: i ≥ j 
, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
isOdd: isOdd(n)
, 
qsub: r - s
, 
qmul: r * s
, 
qabs: |r|
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
sq_stable_from_decidable, 
qle_wf, 
assert_wf, 
isOdd_wf, 
decidable__or, 
decidable__qle, 
decidable__assert, 
better-q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
qeq_wf2, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
assert-qeq, 
int-subtype-rationals, 
istype-assert, 
qdiv_wf, 
or_wf, 
sq_exists_wf, 
iff_wf, 
qless_wf, 
qabs_wf, 
qsub_wf, 
qexp_wf, 
upper_subtype_nat, 
istype-false, 
subtype_rel_set, 
less_than_wf, 
int_nzero-rational, 
nat_plus_inc_int_nzero, 
nat_plus_wf, 
istype-int_upper, 
bool_wf, 
eq_int_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert_of_eq_int, 
bfalse_wf, 
set-value-type, 
equal_wf, 
union-value-type, 
unit_wf2, 
ifthenelse_wf, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
mul_nat_plus, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int-value-type, 
exp-fastexp, 
subtract_wf, 
decidable__le, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
exp_wf_nat_plus, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
set_subtype_base, 
neg_assert_of_eq_int, 
btrue_neq_bfalse, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
mul_preserves_le, 
nat_plus_subtype_nat, 
le_wf, 
add-associates, 
add-swap, 
add-commutes, 
squash_wf, 
true_wf, 
nat_wf, 
nat_properties, 
ge_wf, 
le_witness_for_triv, 
exp_wf2, 
subtract-1-ge-0, 
exp_step, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_weakening2, 
subtract-add-cancel, 
add-subtract-cancel, 
exp_preserves_le, 
itermAdd_wf, 
int_term_value_add_lemma, 
minus-minus, 
iroot-lemma2, 
absval_wf, 
lt_int_wf, 
assert_of_lt_int, 
qdiv-non-neg1, 
qless-int, 
qle-int, 
qmul_preserves_qle2, 
qle_witness, 
qmul_wf, 
qmul_zero_qrng, 
subtype_rel_self, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
bnot_wf, 
not_wf, 
iff_transitivity, 
assert_of_bnot, 
decidable__equal_int, 
itermMinus_wf, 
int_term_value_minus_lemma, 
zero-mul, 
istype-universe, 
exp-zero, 
multiply-is-int-iff, 
add-is-int-iff, 
mul_bounds_1a, 
exp_wf4, 
false_wf, 
absval_unfold, 
istype-top, 
mul_preserves_lt, 
uiff_transitivity, 
exp_wf3, 
qmul-preserves-eq, 
qmul-mul, 
qmul_ac_1_qrng, 
qmul_comm_qrng, 
int-equal-in-rationals, 
assert_of_band, 
not_assert_elim, 
qmul_preserves_qless, 
equal-wf-T-base, 
qmul_one_qrng, 
qmul-qdiv-cancel3, 
int_upper_wf, 
exp-of-mul, 
le_int_wf, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
qexp-non-zero, 
modulus_wf_int_mod, 
int-subtype-int_mod, 
int_mod_wf, 
qexp-qdiv, 
qexp-exp, 
exp-minusone, 
qmul_preserves_qle, 
qadd_wf, 
qmul_over_plus_qrng, 
qadd-add, 
qabs-qminus, 
qinv_inv_q, 
qadd_comm_q, 
qmul_over_minus_qrng, 
qmul_assoc, 
qadd_preserves_qless, 
qless_transitivity_1_qorder, 
valueall-type-has-valueall, 
rationals-valueall-type, 
evalall-reduce, 
qpositive_wf, 
assert-qpositive, 
qadd_inv_assoc_q, 
mon_ident_q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
unionEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
unionIsType, 
universeIsType, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
functionEquality, 
lambdaEquality_alt, 
productEquality, 
independent_pairFormation, 
intEquality, 
inhabitedIsType, 
setIsType, 
unionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
cutEval, 
dependent_set_memberEquality_alt, 
equalityIstype, 
approximateComputation, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
int_eqEquality, 
multiplyEquality, 
equalityElimination, 
closedConclusion, 
promote_hyp, 
equalityIsType4, 
baseApply, 
equalityIsType2, 
equalityIsType1, 
addEquality, 
minusEquality, 
intWeakElimination, 
functionIsTypeImplies, 
dependent_set_memberFormation_alt, 
productIsType, 
functionIsType, 
isect_memberFormation_alt, 
universeEquality, 
pointwiseFunctionality, 
lessCases, 
axiomSqEquality, 
sqequalBase, 
callbyvalueReduce
Latex:
\mforall{}k:\{2...\}.  \mforall{}a:\{a:\mBbbQ{}|  (0  \mleq{}  a)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
    (\mexists{}q:\mBbbQ{}  [((0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  q)  \mwedge{}  |q  \muparrow{}  k  -  a|  <  (1/n))])
Date html generated:
2019_10_16-PM-00_37_36
Last ObjectModification:
2019_06_25-PM-00_20_44
Theory : rationals
Home
Index