Nuprl Lemma : qexp-exp

[n:ℕ]. ∀[x:ℤ].  (x ↑ x^n ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n rationals: exp: i^n nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q exp: i^n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff nat_plus: + rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal_wf qexp-zero iff_weakening_equal exp0_lemma int-subtype-rationals decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf primrec0_lemma primrec-unroll eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot squash_wf true_wf rationals_wf exp_unroll_q exp_wf2 le_wf qmul-mul int-equal-in-rationals decidable__equal_int itermMultiply_wf int_term_value_mul_lemma qmul_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality applyEquality imageElimination because_Cache imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination unionElimination equalityElimination baseApply closedConclusion impliesFunctionality universeEquality dependent_set_memberEquality multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].    (x  \muparrow{}  n  =  x\^{}n)



Date html generated: 2018_05_22-AM-00_00_12
Last ObjectModification: 2017_07_26-PM-06_49_13

Theory : rationals


Home Index