Nuprl Lemma : qv-convex-all
∀[T:Type]. ∀[S:T ⟶ (ℚ List) ⟶ ℙ].  ((∀x:T. qv-convex(p.S[x;p])) 
⇒ qv-convex(p.∀x:T. S[x;p]))
Proof
Definitions occuring in Statement : 
qv-convex: qv-convex(p.S[p])
, 
rationals: ℚ
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
qv-convex: qv-convex(p.S[p])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
nat: ℕ
, 
guard: {T}
Lemmas referenced : 
qle_wf, 
int-subtype-rationals, 
rationals_wf, 
all_wf, 
equal_wf, 
qv-dim_wf, 
subtype_rel_list, 
top_wf, 
nat_wf, 
list_wf, 
qv-convex_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[S:T  {}\mrightarrow{}  (\mBbbQ{}  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  qv-convex(p.S[x;p]))  {}\mRightarrow{}  qv-convex(p.\mforall{}x:T.  S[x;p]))
Date html generated:
2016_05_15-PM-11_21_29
Last ObjectModification:
2015_12_27-PM-07_32_40
Theory : rationals
Home
Index