Nuprl Lemma : qv-convex-all

[T:Type]. ∀[S:T ⟶ (ℚ List) ⟶ ℙ].  ((∀x:T. qv-convex(p.S[x;p]))  qv-convex(p.∀x:T. S[x;p]))


Proof




Definitions occuring in Statement :  qv-convex: qv-convex(p.S[p]) rationals: list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q qv-convex: qv-convex(p.S[p]) all: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] uimplies: supposing a top: Top nat: guard: {T}
Lemmas referenced :  qle_wf int-subtype-rationals rationals_wf all_wf equal_wf qv-dim_wf subtype_rel_list top_wf nat_wf list_wf qv-convex_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule hypothesisEquality cut lemma_by_obid isectElimination thin natural_numberEquality hypothesis applyEquality because_Cache lambdaEquality intEquality independent_isectElimination isect_memberEquality voidElimination voidEquality setElimination rename functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[S:T  {}\mrightarrow{}  (\mBbbQ{}  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  qv-convex(p.S[x;p]))  {}\mRightarrow{}  qv-convex(p.\mforall{}x:T.  S[x;p]))



Date html generated: 2016_05_15-PM-11_21_29
Last ObjectModification: 2015_12_27-PM-07_32_40

Theory : rationals


Home Index