Nuprl Lemma : functor-comp-id

[A,B:SmallCategory]. ∀[F:Functor(A;B)].
  ((functor-comp(F;1) F ∈ Functor(A;B)) ∧ (functor-comp(1;F) F ∈ Functor(A;B)))


Proof




Definitions occuring in Statement :  id_functor: 1 functor-comp: functor-comp(F;G) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B uimplies: supposing a id_functor: 1 functor-comp: functor-comp(F;G) all: x:A. B[x] top: Top so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal-functors functor-comp_wf id_functor_wf ob_mk_functor_lemma functor-ob_wf cat-ob_wf arrow_mk_functor_lemma functor-arrow_wf cat-arrow_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation applyEquality because_Cache independent_pairFormation productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[A,B:SmallCategory].  \mforall{}[F:Functor(A;B)].    ((functor-comp(F;1)  =  F)  \mwedge{}  (functor-comp(1;F)  =  F))



Date html generated: 2020_05_20-AM-07_53_37
Last ObjectModification: 2017_01_13-PM-01_28_24

Theory : small!categories


Home Index