Nuprl Lemma : monad-op_wf

[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x:cat-ob(C)].  (monad-op(M;x) ∈ cat-arrow(C) M(M(x)) M(x))


Proof




Definitions occuring in Statement :  monad-op: monad-op(M;x) monad-fun: M(x) cat-monad: Monad(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monad-op: monad-op(M;x) cat-monad: Monad(C) nat-trans: nat-trans(C;D;F;G) monad-fun: M(x) pi2: snd(t) monad-functor: monad-functor(M) pi1: fst(t) id_functor: 1 all: x:A. B[x] top: Top so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a functor-ob: ob(F) functor-comp: functor-comp(F;G) mk-functor: mk-functor
Lemmas referenced :  ob_mk_functor_lemma arrow_mk_functor_lemma subtype_rel-equal cat-arrow_wf functor-ob_wf functor-comp_wf cat-ob_wf cat-monad_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename productElimination extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis applyEquality hypothesisEquality isectElimination independent_isectElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x:cat-ob(C)].    (monad-op(M;x)  \mmember{}  cat-arrow(C)  M(M(x))  M(x))



Date html generated: 2020_05_20-AM-07_58_55
Last ObjectModification: 2017_01_17-PM-03_46_27

Theory : small!categories


Home Index