Nuprl Lemma : int_op_minus
∀[g:Group{i}]. ∀[e:|g|]. ∀[a:ℤ].  (-a x(*;e;~) e = (~ a x(*;e;~) e) ∈ |g|)
Proof
Definitions occuring in Statement : 
int_op: i x(op;id;inv) e, 
grp: Group{i}, 
grp_inv: ~, 
grp_id: e, 
grp_op: *, 
grp_car: |g|, 
uall: ∀[x:A]. B[x], 
apply: f a, 
minus: -n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
grp: Group{i}, 
mon: Mon, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
int_op: i x(op;id;inv) e, 
le_int: i ≤z j, 
lt_int: i <z j, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
imon: IMonoid, 
true: True, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
nat: ℕ, 
le: A ≤ B
Lemmas referenced : 
grp_car_wf, 
grp_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
minus-zero, 
equal_wf, 
squash_wf, 
true_wf, 
nat_op_zero, 
grp_sig_wf, 
monoid_p_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
iff_weakening_equal, 
grp_inv_id, 
grp_subtype_igrp, 
le_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
assert_wf, 
le_wf, 
eqtt_to_assert, 
assert_of_le_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
nat_op_wf, 
grp_inv_inv, 
nat_wf, 
imon_wf, 
minus-minus, 
intformless_wf, 
int_formula_prop_less_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
setEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
minusEquality, 
lambdaFormation, 
equalityElimination, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality
Latex:
\mforall{}[g:Group\{i\}].  \mforall{}[e:|g|].  \mforall{}[a:\mBbbZ{}].    (-a  x(*;e;\msim{})  e  =  (\msim{}  a  x(*;e;\msim{})  e))
Date html generated:
2017_10_01-AM-08_16_13
Last ObjectModification:
2017_02_28-PM-02_01_12
Theory : groups_1
Home
Index