Nuprl Lemma : open_box-nil
∀[X:CubicalSet]. ∀[I:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
  open_box(X;I;[];x;i) ≡ {L:I-face(X;I) List| (||L|| = 1 ∈ ℤ) ∧ (face-name(hd(L)) = <x, i> ∈ (nameset(I) × ℕ2))} 
Proof
Definitions occuring in Statement : 
open_box: open_box(X;I;J;x;i), 
face-name: face-name(f), 
I-face: I-face(X;I), 
cubical-set: CubicalSet, 
nameset: nameset(L), 
coordinate_name: Cname, 
length: ||as||, 
hd: hd(l), 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
pair: <a, b>, 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
open_box: open_box(X;I;J;x;i), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
ge: i ≥ j , 
guard: {T}, 
int_seg: {i..j-}, 
nameset: nameset(L), 
lelt: i ≤ j < k, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
coordinate_name: Cname, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
pi1: fst(t), 
I-face: I-face(X;I), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
cand: A c∧ B, 
cons: [a / b], 
l_exists: (∃x∈L. P[x]), 
sq_type: SQType(T), 
select: L[n], 
l_all: (∀x∈L.P[x]), 
le: A ≤ B, 
less_than': less_than'(a;b), 
iff: P ⇐⇒ Q, 
subtract: n - m, 
pairwise: (∀x,y∈L.  P[x; y]), 
less_than: a < b, 
true: True, 
face-name: face-name(f), 
pi2: snd(t), 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
adjacent-compatible: adjacent-compatible(X;I;L)
Lemmas referenced : 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
face-name_wf, 
hd_wf, 
int_seg_properties, 
sq_stable__l_member, 
coordinate_name_wf, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
open_box_wf, 
nil_wf, 
adjacent-compatible_wf, 
l_member_wf, 
l_subset_wf, 
nameset_wf, 
l_exists_wf, 
I-face_wf, 
equal_wf, 
int_seg_wf, 
l_all_wf2, 
not_wf, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
decidable__lt, 
istype-le, 
istype-less_than, 
cons_wf, 
pairwise_wf2, 
list_wf, 
cubical-set_wf, 
list-cases, 
product_subtype_list, 
length_of_nil_lemma, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
subtype_base_sq, 
lelt_wf, 
decidable__equal_int, 
istype-false, 
non_neg_length, 
length_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
member_singleton, 
pi1_wf_top, 
decidable__equal_int_seg, 
le_antisymmetry_iff, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
l_subset_nil_left, 
bool_wf, 
ppcc-problem, 
unit_wf2, 
iff_weakening_equal, 
nameset_subtype, 
l_all_cons, 
cons_member, 
pairwise-singleton, 
l_all_single, 
l_all_nil, 
select_wf, 
product_subtype_base, 
nameset_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
sqequalRule, 
productIsType, 
equalityIsType4, 
because_Cache, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesis, 
applyEquality, 
intEquality, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
independent_pairEquality, 
functionIsType, 
productEquality, 
setIsType, 
instantiate, 
cumulativity, 
axiomEquality, 
isectIsTypeImplies, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
applyLambdaEquality, 
unionEquality, 
inlEquality_alt, 
inlFormation_alt
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
    open\_box(X;I;[];x;i)  \mequiv{}  \{L:I-face(X;I)  List|  (||L||  =  1)  \mwedge{}  (face-name(hd(L))  =  <x,  i>)\} 
Date html generated:
2019_11_05-PM-00_28_11
Last ObjectModification:
2018_11_08-PM-01_16_01
Theory : cubical!sets
Home
Index