Nuprl Lemma : assert-ctt-is-fibrant
∀[t:CttTerm]
  ∀X:?CubicalContext. [[X;t]] ⊆r Provisional''''(cttType(context-set(X))) supposing context-ok(X) 
  supposing ↑ctt-is-fibrant(t)
Proof
Definitions occuring in Statement : 
ctt-is-fibrant: ctt-is-fibrant(t), 
ctt_meaning: [[ctxt;t]], 
ctt-term: CttTerm, 
context-set: context-set(ctxt), 
context-ok: context-ok(ctxt), 
cubical-context: ?CubicalContext, 
ctt-type-meaning: cttType(X), 
assert: ↑b, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
provisional-type: Provisional(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
ctt_meaning: [[ctxt;t]], 
prop: ℙ, 
implies: P ⇒ Q, 
ctt-meaning-type: ctt-meaning-type{i:l}(X;t), 
ctt-term: CttTerm, 
wfterm: wfterm(opr;sort;arity), 
ctt-is-fibrant: ctt-is-fibrant(t), 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
bfalse: ff, 
false: False, 
band: p ∧b q, 
not: ¬A, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
eq_atom: x =a y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
uimplies_subtype, 
provisional-type_wf, 
ctt-meaning-type_wf, 
context-set_wf, 
context-ok_wf, 
provisional-subtype, 
ctt-type-meaning_wf, 
isvarterm_wf, 
ctt-op_wf, 
ctt_meaning_wf, 
cubical-context_wf, 
istype-assert, 
ctt-is-fibrant_wf, 
ctt-term_wf, 
assert_wf, 
bnot_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert-bnot, 
eq_atom_wf, 
ctt-op-sort_wf, 
term-opr_wf, 
bfalse_wf, 
assert_elim, 
btrue_neq_bfalse, 
not_wf, 
equal-wf-base, 
set_subtype_base, 
l_member_wf, 
cons_wf, 
nil_wf, 
istype-atom, 
atom_subtype_base, 
assert_of_bnot, 
istype-void, 
subtype_rel-equal, 
ifthenelse_wf, 
ctt-term-meaning_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_eq_atom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
cumulativity, 
universeIsType, 
sqequalRule, 
inhabitedIsType, 
setElimination, 
rename, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
productElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
voidElimination, 
tokenEquality, 
productEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
closedConclusion, 
atomEquality, 
baseClosed, 
isect_memberEquality_alt, 
functionIsType, 
sqequalBase, 
universeEquality, 
equalityElimination
Latex:
\mforall{}[t:CttTerm]
    \mforall{}X:?CubicalContext.  [[X;t]]  \msubseteq{}r  Provisional''''(cttType(context-set(X)))  supposing  context-ok(X) 
    supposing  \muparrow{}ctt-is-fibrant(t)
Date html generated:
2020_05_21-AM-10_36_16
Last ObjectModification:
2020_05_18-AM-00_17_54
Theory : cubical!type!theory
Home
Index