Nuprl Lemma : csm-id-fiber-contraction
∀[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G ⊢ _}].
  (id-fiber-contraction(K;(A)tau)
  = (id-fiber-contraction(G;A))tau++
  ∈ {K.(A)tau.Σ ((A)tau)p (Path_(((A)tau)p)p (q)p q) ⊢ _
     :(Path_(Σ ((A)tau)p (Path_(((A)tau)p)p (q)p q))p (id-fiber-center(K;(A)tau))p q)})
Proof
Definitions occuring in Statement : 
id-fiber-contraction: id-fiber-contraction(X;T), 
id-fiber-center: id-fiber-center(X;T), 
path-type: (Path_A a b), 
cubical-sigma: Σ A B, 
csm+: tau+, 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
pi1: fst(t), 
compose: f o g, 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
csm-comp: G o F, 
csm+: tau+, 
csm-ap-type: (AF)s, 
cc-fst: p, 
cc-snd: q, 
cubical-type: {X ⊢ _}, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
true: True, 
squash: ↓T, 
all: ∀x:A. B[x], 
prop: ℙ, 
cat-comp: cat-comp(C), 
names-hom: I ⟶ J, 
type-cat: TypeCat, 
pi2: snd(t), 
cat-arrow: cat-arrow(C), 
quotient: x,y:A//B[x; y], 
fset: fset(T), 
cube-cat: CubeCat, 
spreadn: spread4, 
op-cat: op-cat(C), 
cat-ob: cat-ob(C), 
nat-trans: nat-trans(C;D;F;G), 
psc_map: A ⟶ B, 
cube_set_map: A ⟶ B, 
cube-context-adjoin: X.A, 
cc-adjoin-cube: (v;u), 
cube-set-restriction: f(s), 
I_cube: A(I), 
ps_context: __⊢, 
cubical_set: CubicalSet, 
functor-ob: ob(F), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
DeMorgan-algebra: DeMorganAlgebra, 
btrue: tt, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
free-dist-lattice: free-dist-lattice(T; eq), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
dM: dM(I), 
record-select: r.x, 
lattice-point: Point(l), 
interval-presheaf: 𝕀, 
constant-cubical-type: (X), 
interval-type: 𝕀, 
cubical-type-at: A(a), 
spreadn: spread3, 
sigma-elim-csm: SigmaElim, 
cubical-fst: p.1, 
cubical-app: app(w; u), 
csm-ap-term: (t)s, 
cubicalpath-app: pth @ r, 
cubical-lambda: (λb), 
cubical-pair: cubical-pair(u;v), 
cubical-path-app: pth @ r, 
term-to-path: <>(a), 
singleton-contraction: singleton-contraction(X;pth), 
path-eta: path-eta(pth), 
id-fiber-contraction: id-fiber-contraction(X;T), 
cubical-snd: p.2, 
path-contraction: path-contraction(X;pth), 
cubical-term-at: u(a), 
interval-meet: r ∧ s
Lemmas referenced : 
paths-equal-eta, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
cubical-sigma_wf, 
cc-fst_wf, 
path-type_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
id-fiber-center_wf, 
id-fiber-contraction_wf, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
p-csm+-type, 
csm-comp-type, 
q-csm+, 
csm-comp-term, 
csm-comp_wf, 
path-type-q-csm-adjoin, 
iff_weakening_equal, 
csm-cubical-sigma, 
equal_wf, 
csm+_wf, 
subtype_rel-equal, 
cube_set_map_cumulativity-i-j, 
csm+_wf+, 
csm-path-type, 
istype-universe, 
true_wf, 
squash_wf, 
subtype_rel_self, 
cubical-term-eqcd, 
path-type-sub-pathtype, 
cubical-term_wf, 
pathtype_wf, 
cubical-type-cumulativity, 
path-eta_wf, 
cubical-sigma-p-p, 
interval-type_wf, 
cubical-term-equal, 
cube_set_restriction_pair_lemma, 
I_cube_pair_redex_lemma, 
cubical-sigma-at, 
path-type-at, 
path-type-ap-morph, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
csm-cubical-type-ap-morph, 
I_cube_wf, 
cat-ob_wf, 
small-category-cumulativity-2, 
type-cat_wf, 
cube-cat_wf, 
op-cat_wf, 
functor-ob_wf, 
nh-id-left, 
nh-id_wf, 
nh-comp_wf, 
cube-set-restriction-when-id, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
dM_wf, 
lattice-point_wf, 
cc_fst_adjoin_cube_lemma, 
nat_wf, 
fset_wf, 
cc-fst_wf_interval, 
cubical-fst_wf, 
csm-adjoin_wf, 
csm-adjoin-id-adjoin, 
cubical-snd_wf, 
subtype_rel_universe1, 
equal_functionality_wrt_subtype_rel2, 
sub_cubical_set_self, 
subset-cubical-term2, 
interval-type-at, 
interval-type-ap-morph, 
csm-ap-type-at, 
csm-ap_wf, 
cubical-type-at_wf, 
dM-lift_wf2, 
cubical-sigma-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
Error :memTop, 
rename, 
setElimination, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
lambdaEquality_alt, 
dependent_functionElimination, 
universeEquality, 
hyp_replacement, 
functionExtensionality, 
functionEquality, 
isectEquality, 
cumulativity, 
productEquality, 
lambdaFormation_alt, 
equalityIstype
Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G  \mvdash{}  \_\}].
    (id-fiber-contraction(K;(A)tau)  =  (id-fiber-contraction(G;A))tau++)
Date html generated:
2020_05_20-PM-03_32_33
Last ObjectModification:
2020_05_01-PM-06_35_02
Theory : cubical!type!theory
Home
Index