Nuprl Lemma : cubical-path-1-ap-morph
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[phi:𝔽(I)].
∀[u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}]. ∀[a:cubical-path-1(Gamma;A;I;i;rho;phi;u)]. ∀[J:fset(ℕ)]. ∀[g:J ⟶ I].
∀[j:{j:ℕ| ¬j ∈ J} ].
  ((a (i1)(rho) g) ∈ cubical-path-1(Gamma;A;J;j;g,i=j(rho);g(phi);(u)subset-trans(I+i;J+j;g,i=j;s(phi))))
Proof
Definitions occuring in Statement : 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type-ap-morph: (u a f), 
cubical-type: {X ⊢ _}, 
subset-trans: subset-trans(I;J;f;x), 
subset-iota: iota, 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
csm-comp: G o F, 
context-map: <rho>, 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-e': g,i=j, 
nc-1: (i1), 
nc-s: s, 
add-name: I+i, 
names-hom: I ⟶ J, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
not: ¬A, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
false: False, 
all: ∀x:A. B[x], 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1), 
csm-ap-term: (t)s, 
cubical-term-at: u(a), 
subset-trans: subset-trans(I;J;f;x), 
csm-ap: (s)x, 
name-morph-satisfies: (psi f) = 1, 
squash: ↓T, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
cube-set-restriction: f(s), 
pi2: snd(t), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
context-map: <rho>, 
subset-iota: iota, 
csm-comp: G o F, 
compose: f o g, 
functor-arrow: arrow(F)
Lemmas referenced : 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
istype-void, 
names-hom_wf, 
cubical-path-1_wf, 
cubical-term_wf, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
fset_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-type-ap-morph_wf, 
nc-1_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
nc-e'_wf, 
cubical-subset-I_cube-member, 
member-cubical-subset-I_cube, 
nh-comp_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl-morph_wf, 
subtype_rel_self, 
fl-morph-restriction, 
iff_weakening_equal, 
cube-set-restriction-comp, 
nh-comp-assoc, 
nc-e'-lemma1, 
subtype_rel_weakening, 
ext-eq_weakening, 
cubical-type-ap-morph-comp-eq-general, 
cubical-type-cumulativity2, 
cubical-term-at_wf, 
cubical-subset-I_cube, 
name-morph-satisfies_wf, 
name-morph-satisfies-comp, 
nh-id_wf, 
nh-id-right, 
uiff_transitivity2, 
s-comp-nc-1, 
csm-ap-type-at, 
istype-cubical-type-at, 
subset-trans_wf, 
csm-ap-term_wf, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setIsType, 
extract_by_obid, 
functionIsType, 
universeIsType, 
isectElimination, 
thin, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
lambdaFormation_alt, 
productElimination, 
hyp_replacement, 
imageElimination, 
universeEquality, 
productEquality, 
cumulativity, 
isectEquality, 
imageMemberEquality, 
baseClosed, 
equalityIstype
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].
\mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].  \mforall{}[a:cubical-path-1(Gamma;A;I;i;rho;phi;u)].  \mforall{}[J:fset(\mBbbN{})].
\mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    ((a  (i1)(rho)  g)  \mmember{}  cubical-path-1(Gamma;A;J;j;g,i=j(rho);g(phi);
                                                                        (u)subset-trans(I+i;J+j;g,i=j;s(phi))))
Date html generated:
2020_05_20-PM-03_46_58
Last ObjectModification:
2020_04_09-AM-11_21_11
Theory : cubical!type!theory
Home
Index