Nuprl Lemma : cubical-subset-term-trans
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[rho:Gamma(I+i)].
∀[phi:𝔽(I)]. ∀[u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}].
  ((u)subset-trans(I+i;J+j;g,i=j;s(phi)) ∈ {J+j,s(g(phi)) ⊢ _:(A)<g,i=j(rho)> o iota})
Proof
Definitions occuring in Statement : 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
subset-trans: subset-trans(I;J;f;x), 
subset-iota: iota, 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
csm-comp: G o F, 
context-map: <rho>, 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-e': g,i=j, 
nc-s: s, 
add-name: I+i, 
names-hom: I ⟶ J, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
cubical-term_wf, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
names-hom_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
cubical-type_wf, 
cubical_set_wf, 
nc-e'_wf, 
squash_wf, 
true_wf, 
nc-e'-lemma3, 
equal_wf, 
istype-universe, 
fl-morph-restriction, 
cube-set-restriction-comp, 
subtype_rel_self, 
iff_weakening_equal, 
equal_functionality_wrt_subtype_rel2, 
csm-ap-term_wf, 
subset-trans_wf, 
csm-ap-comp-type, 
cubical-type-cumulativity2, 
subtype_rel-equal, 
cube_set_map_wf, 
subset-trans-iota-lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
thin, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
setIsType, 
functionIsType, 
intEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
cumulativity, 
hyp_replacement
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I]\000C.
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
    ((u)subset-trans(I+i;J+j;g,i=j;s(phi))  \mmember{}  \{J+j,s(g(phi))  \mvdash{}  \_:(A)<g,i=j(rho)>  o  iota\})
Date html generated:
2020_05_20-PM-03_47_32
Last ObjectModification:
2020_04_09-AM-11_16_22
Theory : cubical!type!theory
Home
Index