Nuprl Lemma : nc-e'-comp-m

[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[k:{k:ℕ| ¬k ∈ I+i} ]. ∀[l:{l:ℕ| ¬l ∈ J+j} ].
  (g,i=j ⋅ m(j;l) m(i;k) ⋅ g,i=j,k=l ∈ J+j+l ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-m: m(i;j) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 names: names(I) nc-e': g,i=j nc-m: m(i;j) compose: g top: Top so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: and: P ∧ Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: names-hom: I ⟶ J member: t ∈ T uall: [x:A]. B[x] rev_implies:  Q iff: ⇐⇒ Q squash: T true: True DeMorgan-algebra: DeMorganAlgebra nequal: a ≠ b ∈  sq_stable: SqStable(P)
Lemmas referenced :  nh-comp-sq neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert eq_int_wf trivial-member-add-name1 nc-m_wf names-hom_wf istype-void strong-subtype-self le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf nat_wf fset-member_wf istype-nat istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties add-name_wf names_wf trivial-member-add-name2 iff_weakening_equal subtype_rel_self dM-lift-dMpair dM-lift-inc istype-universe true_wf squash_wf equal_wf int_formula_prop_eq_lemma intformeq_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf nc-e'_wf eq_int_eq_true btrue_wf not_wf int_subtype_base dMpair-eq-meet not-added-name uall_wf dM-lift_wf2 dM-point-subtype f-subset-add-name names-subtype fset-member-add-name f-subset-add-name1 f-subset_wf dM-lift-is-id2 decidable__equal_int dM_inc_wf
Rules used in proof :  cumulativity instantiate promote_hyp equalityIstype productElimination equalitySymmetry equalityTransitivity equalityElimination lambdaFormation_alt inhabitedIsType isectIsTypeImplies axiomEquality isect_memberEquality_alt because_Cache intEquality applyEquality functionIsType setIsType voidElimination universeIsType independent_pairFormation sqequalRule Error :memTop,  int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality dependent_functionElimination hypothesis rename setElimination dependent_set_memberEquality_alt hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid functionExtensionality cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality lambdaEquality baseClosed imageMemberEquality universeEquality imageElimination isectEquality productEquality lambdaFormation setEquality dependent_pairFormation applyLambdaEquality inrFormation isect_memberEquality voidEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[k:\{k:\mBbbN{}|  \mneg{}k  \mmember{}  I+i\}  ].
\mforall{}[l:\{l:\mBbbN{}|  \mneg{}l  \mmember{}  J+j\}  ].
    (g,i=j  \mcdot{}  m(j;l)  =  m(i;k)  \mcdot{}  g,i=j,k=l)



Date html generated: 2020_05_20-PM-01_37_31
Last ObjectModification: 2020_01_15-PM-02_37_08

Theory : cubical!type!theory


Home Index