Nuprl Lemma : nc-e'-lemma4

[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[k:{i1:ℕ| ¬i1 ∈ I+i} ]. ∀[l:{i:ℕ| ¬i ∈ J+j} ].
  ((i0) ⋅ s ⋅ g,i=j,k=l g,i=j ⋅ (j0) ⋅ s ∈ J+j+l ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] names-hom: I ⟶ J member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] compose: g names: names(I) nc-0: (i0) nc-e': g,i=j bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b squash: T DeMorgan-algebra: DeMorganAlgebra true: True iff: ⇐⇒ Q rev_implies:  Q dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum empty-fset: {} nil: [] lattice-0: 0 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) dM0: 0 nequal: a ≠ b ∈  sq_stable: SqStable(P)
Lemmas referenced :  names_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le fset-member_wf nat_wf int-deq_wf istype-void names-hom_wf istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf f-subset-add-name1 f-subset-add-name eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name nh-comp-sq dM0-sq-empty equal_wf squash_wf true_wf istype-universe lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift_wf2 nc-e'_wf dM-lift-0 nc-s_wf dM-lift-inc nc-0_wf trivial-member-add-name1 subtype_rel_self iff_weakening_equal dM0_wf bool_wf intformeq_wf int_formula_prop_eq_lemma dM_inc_wf dM-lift-is-id f-subset_wf int_subtype_base names-subtype dM-point-subtype dM-lift-s equal_functionality_wrt_subtype_rel2 free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt functionExtensionality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt setElimination rename hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination setIsType because_Cache functionIsType applyEquality intEquality inhabitedIsType lambdaFormation_alt equalityElimination equalityTransitivity equalitySymmetry productElimination equalityIstype promote_hyp instantiate imageElimination universeEquality productEquality cumulativity isectEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[k:\{i1:\mBbbN{}|  \mneg{}i1  \mmember{}  I+i\}  ].
\mforall{}[l:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J+j\}  ].
    ((i0)  \mcdot{}  s  \mcdot{}  g,i=j,k=l  =  g,i=j  \mcdot{}  (j0)  \mcdot{}  s)



Date html generated: 2020_05_20-PM-01_37_49
Last ObjectModification: 2020_01_15-PM-02_55_22

Theory : cubical!type!theory


Home Index