Nuprl Lemma : pathtype-comp_wf

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ Compositon(A)].  (pathtype-comp(G;A;cA) ∈ G ⊢ Compositon(Path(A)))


Proof




Definitions occuring in Statement :  pathtype-comp: pathtype-comp(G;A;cA) composition-structure: Gamma ⊢ Compositon(A) pathtype: Path(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pathtype-comp: pathtype-comp(G;A;cA) composition-function: composition-function{j:l,i:l}(Gamma;A) squash: T prop: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm+: tau+ csm-comp: F csm-comp-structure: (cA)tau interval-type: 𝕀 compose: g cc-fst: p cc-snd: q constant-cubical-type: (X) csm-ap-type: (AF)s csm-adjoin: (s;u) csm-ap: (s)x cubical-type: {X ⊢ _} interval-1: 1(𝕀) csm-id-adjoin: [u] csm-id: 1(X) pi2: snd(t) pi1: fst(t) csm-ap-term: (t)s interval-0: 0(𝕀) path-elim: path-elim(pth) cubicalpath-app: pth r cubical-app: app(w; u) cubical-path-app: pth r term-to-pathtype: <>a pathtype: Path(A) cubical-fun: (A ⟶ B) composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
Lemmas referenced :  composition-structure_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe cube-context-adjoin_wf context-subset_wf interval-type_wf csm-pathtype subset-cubical-type sub_cubical_set_functionality context-subset-is-subset pathtype_wf csm-ap-type_wf subtype_rel_self iff_weakening_equal cubical-term-eqcd cubicalpath-app_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 interval-0_wf csm+_wf cc-fst_wf_interval csm-interval-type comp_term_wf csm-ap-term_wf face-type_wf csm-face-type csm-comp-structure-composition-function csm+_wf_interval csm-comp-structure_wf constrained-cubical-term_wf cubical-type-cumulativity2 csm-context-subset-subtype3 cube_set_map_wf csm-context-subset-subtype2 context-subset-map subset-cubical-term sub_cubical_set_transitivity sub_cubical_set_self context-adjoin-subset1 context-adjoin-subset4 cc-snd_wf csm-id-adjoin_wf path-elim_wf thin-context-subset-adjoin istype-cubical-term context-subset-term-subtype csm-cubicalpath-app csm-id-adjoin_wf-interval-1 interval-1_wf csm-context-subset-subtype csm-id-adjoin-subset term-to-pathtype_wf term-to-pathtype-eta thin-context-subset term-to-path-subset subset-cubical-term2 uniform-comp-function_wf csm-constrained-cubical-term csm-comp_term subtype_rel-equal cubical-term_wf csm_ap_term_fst_adjoin_lemma csm-term-to-pathtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate functionExtensionality sqequalRule applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination independent_isectElimination because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination cumulativity setElimination rename hyp_replacement Error :memTop,  inhabitedIsType independent_pairFormation lambdaFormation_alt equalityIstype dependent_set_memberEquality_alt applyLambdaEquality functionEquality setEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].    (pathtype-comp(G;A;cA)  \mmember{}  G  \mvdash{}  Compositon(Path(A)))



Date html generated: 2020_05_20-PM-05_08_56
Last ObjectModification: 2020_04_18-PM-00_02_45

Theory : cubical!type!theory


Home Index