Nuprl Lemma : universe-path-type-lemma-0
∀G:j⊢. ∀A,B:{G ⊢ _:c𝕌}. ∀p:{G ⊢ _:(Path_c𝕌 A B)}. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀v:G(I+new-name(I)).
  (universe-type(A;I+new-name(I);v)((new-name(I)0) ⋅ f)
  = fst((p(v) I+new-name(I) 1 <new-name(I)>))((new-name(I)0) ⋅ f)
  ∈ Type)
Proof
Definitions occuring in Statement : 
universe-type: universe-type(t;I;a), 
cubical-universe: c𝕌, 
path-type: (Path_A a b), 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
cubical-type-at: A(a), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-0: (i0), 
new-name: new-name(I), 
add-name: I+i, 
nh-comp: g ⋅ f, 
nh-id: 1, 
names-hom: I ⟶ J, 
dM_inc: <x>, 
fset: fset(T), 
nat: ℕ, 
pi1: fst(t), 
all: ∀x:A. B[x], 
apply: f a, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
cubical-universe: c𝕌, 
closed-cubical-universe: cc𝕌, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT), 
closed-type-to-type: closed-type-to-type(T), 
and: P ∧ Q, 
names: names(I), 
uimplies: b supposing a, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
fibrant-type: FibrantType(X), 
pi1: fst(t), 
so_lambda: so_lambda4, 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
formal-cube: formal-cube(I), 
implies: P ⇒ Q, 
true: True, 
universe-type: universe-type(t;I;a), 
DeMorgan-algebra: DeMorganAlgebra, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nh-comp: g ⋅ f, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g), 
compose: f o g, 
dM: dM(I), 
dM-lift: dM-lift(I;J;f), 
nc-0: (i0), 
empty-fset: {}, 
nil: [], 
it: ⋅, 
lattice-0: 0, 
record-select: r.x, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
lattice-point: Point(l), 
cubical-type-at: A(a), 
interval-type: 𝕀, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
interval-presheaf: 𝕀, 
cubical-term-at: u(a)
Lemmas referenced : 
cubical-term-at_wf, 
add-name_wf, 
new-name_wf, 
path-type-at, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
I_cube_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
istype-cubical-term, 
path-type_wf, 
cubical-universe_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
nh-id_wf, 
nh-comp_wf, 
nc-0_wf, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
pi1_wf_top, 
cubical-type_wf, 
formal-cube_wf1, 
lifting-strict-spread, 
strict4-spread, 
cubical-type-at_wf, 
I_cube_pair_redex_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cube_set_restriction_pair_lemma, 
csm-ap-type-at, 
csm-ap-context-map, 
nh-id-left, 
dM0_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift-inc, 
subtype_rel_self, 
iff_weakening_equal, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
dM0-sq-0, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
eq_int_eq_true, 
btrue_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
dM-lift-0-sq, 
interval-type-ap-morph, 
cubical-type-ap-morph_wf, 
interval-type_wf, 
nc-1_wf, 
cube-set-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
Error :memTop, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
productElimination, 
universeIsType, 
dependent_set_memberEquality_alt, 
intEquality, 
independent_isectElimination, 
natural_numberEquality, 
independent_pairEquality, 
equalityIstype, 
independent_functionElimination, 
hyp_replacement, 
universeEquality, 
productEquality, 
cumulativity, 
isectEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
voidElimination, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}.  \mforall{}p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}v:G(I+new-name(I)).
    (universe-type(A;I+new-name(I);v)((new-name(I)0)  \mcdot{}  f)
    =  fst((p(v)  I+new-name(I)  1  <new-name(I)>))((new-name(I)0)  \mcdot{}  f))
Date html generated:
2020_05_20-PM-07_35_56
Last ObjectModification:
2020_04_28-PM-01_19_11
Theory : cubical!type!theory
Home
Index