Nuprl Lemma : p2-incidence
∀[p,v:ℙ^2].  uiff(v on p;((((v 0) * (p 0)) + ((v 1) * (p 1))) - (v 2) * (p 2)) = r0)
Proof
Definitions occuring in Statement : 
proj-incidence: v on p, 
real-proj: ℙ^n, 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
real-proj: ℙ^n, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
true: True, 
nat: ℕ, 
proj-incidence: v on p, 
subtype_rel: A ⊆r B, 
proj-rev: proj-rev(n;p), 
dot-product: x⋅y, 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
lt_int: i <z j, 
eq_int: (i =z j), 
req_int_terms: t1 ≡ t2, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsub_wf, 
radd_wf, 
rmul_wf, 
false_wf, 
lelt_wf, 
int-to-real_wf, 
proj-incidence_wf, 
le_wf, 
dot-product_wf, 
proj-rev_wf, 
real-proj_wf, 
req_wf, 
rsum_wf, 
ifthenelse_wf, 
lt_int_wf, 
real_wf, 
rminus_wf, 
int_seg_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
eq_int_wf, 
assert_of_eq_int, 
int_subtype_base, 
neg_assert_of_eq_int, 
subtract_wf, 
subtract-add-cancel, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
req-implies-req, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rsum_unroll, 
req_weakening, 
radd_functionality, 
rsum_single, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
independent_functionElimination, 
addEquality, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
voidElimination, 
intEquality, 
approximateComputation, 
int_eqEquality, 
voidEquality
Latex:
\mforall{}[p,v:\mBbbP{}\^{}2].    uiff(v  on  p;((((v  0)  *  (p  0))  +  ((v  1)  *  (p  1)))  -  (v  2)  *  (p  2))  =  r0)
Date html generated:
2017_10_05-AM-00_19_55
Last ObjectModification:
2017_06_17-AM-10_08_53
Theory : inner!product!spaces
Home
Index