Nuprl Lemma : adjacent-frs-points
∀[p:ℝ List]. ∀[i:ℕ||p|| - 1].  (frs-non-dec(p) ⇒ r0≤p[i + 1] - p[i]≤frs-mesh(p))
Proof
Definitions occuring in Statement : 
frs-mesh: frs-mesh(p), 
frs-non-dec: frs-non-dec(L), 
rbetween: x≤y≤z, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
rbetween: x≤y≤z, 
and: P ∧ Q, 
prop: ℙ, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
le: A ≤ B, 
not: ¬A, 
false: False, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
nat_plus: ℕ+, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
rev_uimplies: rev_uimplies(P;Q), 
frs-non-dec: frs-non-dec(L), 
subtract: n - m, 
rsub: x - y, 
frs-mesh: frs-mesh(p), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
so_apply: x[s]
Lemmas referenced : 
frs-non-dec_wf, 
less_than'_wf, 
rsub_wf, 
select_wf, 
real_wf, 
nat_plus_properties, 
int_seg_properties, 
subtract_wf, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
subtract-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
int-to-real_wf, 
nat_plus_wf, 
frs-mesh_wf, 
int_seg_wf, 
list_wf, 
radd-preserves-rleq, 
rleq_wf, 
radd_wf, 
rminus_wf, 
lelt_wf, 
add-member-int_seg2, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd-ac, 
req_weakening, 
radd_functionality, 
radd-rminus-both, 
radd-zero-both, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
rmaximum_ub
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
minusEquality, 
axiomEquality, 
dependent_set_memberEquality, 
independent_functionElimination, 
equalityElimination, 
instantiate, 
cumulativity
Latex:
\mforall{}[p:\mBbbR{}  List].  \mforall{}[i:\mBbbN{}||p||  -  1].    (frs-non-dec(p)  {}\mRightarrow{}  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}frs-mesh(p))
Date html generated:
2017_10_03-AM-09_36_22
Last ObjectModification:
2017_07_28-AM-07_54_02
Theory : reals
Home
Index