Nuprl Lemma : continuous-abs-subtype

[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] continuous for x ∈ I ⊆|f[x]| continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rabs: |x| subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] prop: continuous-abs-ext implies:  Q all: x:A. B[x] continuous: f[x] continuous for x ∈ I sq_exists: x:{A| B[x]} and: P ∧ Q nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top squash: T true: True sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B
Lemmas referenced :  continuous_wf i-member_wf real_wf rfun_wf interval_wf continuous-abs-ext isect_wf rabs_wf equal_wf nat_plus_wf set_wf icompact_wf i-approx_wf rless_wf int-to-real_wf less_than_wf rleq_wf rsub_wf i-member-approx rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf squash_wf true_wf iff_weakening_equal subtype_rel_dep_function rmin_wf rmin-idempotent-eq sq_exists_wf less_than'_wf sq_stable__and sq_stable__rless sq_stable__all sq_stable__rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality rename extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule applyEquality setElimination dependent_set_memberEquality hypothesis setEquality axiomEquality isect_memberEquality because_Cache instantiate equalityTransitivity equalitySymmetry functionEquality lambdaFormation dependent_functionElimination independent_functionElimination isectEquality functionExtensionality productEquality natural_numberEquality independent_isectElimination inrFormation productElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination universeEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality minusEquality independent_pairEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  continuous  for  x  \mmember{}  I  \msubseteq{}r  |f[x]|  continuous  for  x  \mmember{}  I)



Date html generated: 2017_10_03-AM-10_23_04
Last ObjectModification: 2017_07_28-AM-08_07_28

Theory : reals


Home Index