Nuprl Lemma : cosine-rminus

x:ℝ(cosine(-(x)) cosine(x))


Proof




Definitions occuring in Statement :  cosine: cosine(x) req: y rminus: -(x) real: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  guard: {T} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q true: True squash: T
Lemmas referenced :  cosine-is-limit rminus_wf real_wf int-rmul_wf fastexp_wf int-rdiv_wf fact_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf le_wf subtype_rel_sets less_than_wf nequal_wf nat_plus_properties intformeq_wf intformless_wf int_formula_prop_eq_lemma int_formula_prop_less_lemma equal-wf-base int_subtype_base rnexp_wf nat_wf isOdd_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cosine_wf nat_plus_wf series-sum_functionality int-rmul_functionality int-rdiv_functionality rnexp-rminus req_weakening bfalse_wf odd-iff-not-even assert-isEven equal-wf-T-base series-sum_wf squash_wf true_wf int_nzero_wf ifthenelse_wf iff_weakening_equal series-sum-unique req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis lambdaEquality minusEquality natural_numberEquality dependent_set_memberEquality multiplyEquality setElimination rename unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality because_Cache setEquality equalityTransitivity equalitySymmetry applyLambdaEquality baseClosed independent_functionElimination equalityElimination productElimination promote_hyp instantiate cumulativity baseApply closedConclusion imageElimination functionEquality universeEquality imageMemberEquality

Latex:
\mforall{}x:\mBbbR{}.  (cosine(-(x))  =  cosine(x))



Date html generated: 2017_10_03-AM-09_29_24
Last ObjectModification: 2017_07_28-AM-07_48_18

Theory : reals


Home Index